Generalized \(q\)-Srivastava-Attiya operator on multivalent functions

Rizwan Salim Badar, Khalida Inayat Noor

Abstract


In this article, we define a generalized \(q\)-integral operator on multivalent functions. It generalizes many known linear operators in Geometric Function Theory (GFT). Inclusions results, convolution properties and \(q\)-Bernardi integral preservation of the subclasses of analytic functions are discussed.

Keywords


multivalent functions, q-difference operator, q-SrivastavaAttiya operator, starlike and convex functions, q-generalized Bernardi operator

Full Text:

PDF

References


Agrawal, S., Sahoo, S.K., A generalization of starlike functions of order alpha, Hokkaido Math. J., 46(2017), 15-27.

Alexander, J.W., Functions which map the interior of the unit circle upon simple region, Ann. Math. 17(1915), 12-22.

Ali, S., Noor, K.I., Study on the q-analogue of a certain family of linear operators, Turkish J. Math., 43(2019), 2707-2714.

Cetinkaya A., Polatoglu, Y., q-Harmonic mappings for which analytic part is q-convex functions of complex order, Hacet. J. Math. Stat., 47(2018), 813-820.

Ernst, T., A Comprehensive Treatment of q-Calculus, Springer, 2012.

Govindaraj, M., Sivasubramanian, S., On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43(2017), 475-487.

Ismail, M.E.H., Markes, E., Styer, D., A generalization of starlike functions, Complex Var., 14(1990), 77-84.

Jackson, F.H., On q-definite integrals, Q.J. Pure Appl. Math., 41(1910), 193-203.

Jackson, F.H., q-difference equations, Am. J. Math., 32(1910), 305-314.

Kanas, S., Altinkaya, S ., Yalcin, S., Subclass of k-uniformly starlike functions defined by the symmetric q-derivative operator, Ukr. Math. J., 70(2019), 1727-1740.

Noor, K.I., On generalized q-close-to-convexity, Appl. Math. Inf. Sci., 11(5)(2017), 1383-1388.

Noor, K.I., Riaz, S., Generalized q-starlike functions, Studia Sci. Math. Hungar., 54(2017), 509-522.

Owa, S., Srivastava, H.M., Some applications of generalized Libera integral operator, Proc. Japan Acad. Ser. A. Math. Sci., 62(1986), 125-128.

Purohit, S.D., Raina, R.K., Certain subclasses of analytic functions associated with fractional q-calculus operator, Math. Scand., 109(2007), 55-70.

Sahoo, S.K., Sharma, N.L., On a generalization of close-to-convex functions, Ann. Polon. Math., 113(2015), 93-108.

Shams, S., Kulkarni, S.R., Jahangiri, J.M., Subordination properties of p-valent functions defined by integral operators, Int. J. Math. Math. Sci., Article ID 94572, (2006).

Shamsan, H., Latha, S., On generalized bounded Mocanu variation related to q-derivative and conic regions, Ann. Pure Appl. Math., 17(2018), 67-83.

Shi, L., Khan, Q., Srivastava, G., Liu, J., Arif, M., A study of multivalent q-starlike functions connected with circular domain, Mathematics, 670(2018).

Srivastava, H.M., Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory, Iran. J. Sci. Technol. Trans. Sci., 44(2020), 27-344.

Srivastava, H.M., Owa, S., Univalent Functions, Fractional Calculus, and Their Applications, Ellis Horwood, 1989.

Srivastava, H.M., Tahir, M., Khan, B., Ahmed, Q.Z., Khan, N., Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11(2019), 292.

Wang, Z.G., Hussain, S., Naeem, S.M., Mahmood, T., Khan, S., A subclass of univalent functions associated with q-analogue of Choi-Saigo-Srivastava operator, Hacet. J. Math.

Stat., 49(2020), 1471-1479.

Wang, Z.G., Li, Q.G., Jiang, Y.P., Certain subclasses of multivalent analytic functions involving generalized Srivastava-Attiya operator, Integral Transforms Spec. Funct., 21(2010), 221-234.




DOI: http://dx.doi.org/10.24193/subbmath.2024.1.05

Refbacks

  • There are currently no refbacks.