Global nonexistence of solutions to a logarithmic nonlinear wave equation with innite memory and delay term

Abdeldjabar Bourega, Djamel Ouchenane

Abstract


As a continuity to the study by M. Kafini [24] , we consider a logarithmic nonlinear wave condition with delay term. We obtain a blow-up result of solutions under suitable conditions.


Keywords


Logarithmic source; blow up; wave equation; negative; initial energy; delay term.

Full Text:

PDF

References


Abdallah, C., Dorato, P., Benitez-Read, J., et al., Delayed positive feedback can stabilize

oscillatory system, San Francisco, CA: ACC, (1993), 3106-3107.

Al-Gharabli, M.M., Messaoudi, S.A., Existence and a general decay result for a plate

equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18(2018),

-125.

Ball, J.M., Remarks on blow up and nonexistence theorems for nonlinear evolutions

equations, Quart. J. Math. Oxford, 28(1977), 473-486.

Bartkowski, K., G orka, P., One-dimensional Klein-Gordon equation with logarithmic

nonlinearities, J. Phys. A. Math. Theor., 41(2008), 355201.

Bialynicki-Birula, I., Mycielski, J., Wave equations with logarithmic nonlinearities, Bull.

Acad. Polon. Sci., S er. Sci. Math. Astron. Phys., 23(1975), 461-466.

Boulaaras, S., Ouchenane, D., General decay for a coupled Lam e system of nonlinear

viscoelastic equations, Math. Meth. Appl. Sci., 43(2020), no. 4, 1717-1735.

Brezis, H., Functional Analysis, Sobolev Spaces and Partial Di erential Equations, New

York, Springer, 2010.

Cazenave, T., Haraux, A., Equations d' evolution avec non-lin earit e logarithmique, Ann.

Fac. Sci. Toulouse Math., 5(1980), no. 2, 21-51.

Choucha, A., Boulaaras, S., Ouchenane, D., Exponential decay of solutions for a viscoelastic

coupled Lame system with logarithmic source and distributed delay terms, Math.

Meth. Appl. Sci., 2020 (in press).

Choucha, A., Ouchenane, D., Boulaaras, S., Well posedness and stability result for a thermoelastic

laminated Timoshenko beam with distributed delay term, Math. Meth. Appl.

Sci., 43(2020), 9983-10004.

Dafermos, C.M., Asymptotic stability in viscoelasticity, Arch Ration Mech Anal.,

(1970), 297-308.

Dafermos, C.M., An abstract Volterra equation with applications to linear viscoelasticity,

J. Di er. Equ., 7(1970), 554-569.

Datko, R., Not all feedback stabilized hyperbolic systems are robust with respect to small

time delays in their feedbacks, SIAM J. Control Optim., 26(1988), no. 3, 697-713.

Datko, R., Lagnese, J., Polis, M.P., An example on the e ect of time delays in boundary

feedback stabilization of wave equations, SIAM J. Control Optim., 24(1986), no. 1, 152-

De Martino, S., Falanga, M., Godano, C., Lauro, G., Logarithmic Schrodinger-like equation

as a model for magma transport, Europhys. Lett., 63(2003), no. 3, 472-475.

Feng, H., Li, S., Global nonexistence for a semilinear wave equation with nonlinear

boundary dissipation, J. Math. Anal. Appl., 391(2012), no. 1, 255-264.

Georgiev, V., Todorova, G., Existence of solutions of the wave equation with nonlinear

damping and source terms, J. Di er. Equ., 109(1994), 295-308.

G orka, P., Logarithmic quantum mechanics: Existence of the ground state, Found Phys.

Lett., 19(2006), 591-601.

G orka, P., Convergence of logarithmic quantum mechanics to the linear one, Lett. Math.

Phys., 81(2007), 253-264.

G orka, P., Logarithmic Klein-Gordon equation, Acta Phys. Polon. B., 40(2009), 59-66.

Guo, Y., Rammaha, M.A., Blow-up of solutions to systems of nonlinear wave equations

with supercritical sources. Appl. Anal., 92(2013), 1101-1115.

Han, X., Global existence of weak solution for a logarithmic wave equation arising from

Q-ball dynamics, Bull. Korean Math. Soc., 50(2013), 275-283.

Hiramatsu, T., Kawasaki, M., Takahashi, F., Numerical study of Q-ball formation in

gravity mediation, J. Cosmol. Astropart. Phys., 6(2010), 008.

Ka ni, M., Messaoudi, S.A., Local existence and blow up of solutions

to a logarithmic nonlinear wave equation with delay, Appl. Anal., 1-18.

https://doi.org/10.1080/00036811.2018.1504029.2018.

Komornik, V., Exact Controllability and Stabilization. The Multiplier Method, Paris,

Masson-John Wiley, 1994.

Levine, H.A., Some additional remarks on the nonexistence of global solutions to nonlinear

wave equation, SIAM J. Math. Anal., 5(1974), 138-146.

Levine, H.A., Instability and nonexistence of global solutions of nonlinear wave equation

of the form Putt = Au + F(u), Trans. Amer. Math. Soc., 192(1974), 1-21.

Levine, H.A., Serrin, J., A global nonexistence theorem for quasilinear evolution equation

with dissipation, Arch. Ration. Mech. Anal., 137(1997), 341-361.

Lions, J.L., Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires,

nd ed. Paris, Dunod, 2002.

Messaoudi, S.A., Blow up in a nonlinearly damped wave equation, Math. Nachr.,

(2001), 1-7.

Ouchenane, D., A stability result of a timoshenko system in thermoelasticity of second

sound with a delay term in the internal feedback, Georgian Math. J., 21(2014), no. 4,

-489.

Ouchenane, D., Boulaaras, S.M., Alharbi, A., Cherif, B., Blow up of coupled nonlinear

Klein-Gordon system with distributed delay, strong damping, and source terms, Hindawi

J.F.S, ID 5297063, 1-9. https://doi.org/10.1155/2020/5297063, 2020.

Ouchenane, D., Zennir, K., Bayoud, M., Global nonexistence of solutions for a system

of nonlinear viscoelastic wave equation with degenerate damping and source terms, Ukr.

Math. J., 65(7)(2013), 723-739.

Rahmoune, A., Ouchenane, D., Boulaaras, D., Agarwal, S., Growth of solutions for a

coupled nonlinear Klein{Gordon system with strong damping, source, and distributed

delay terms, Adv. Di erence Equ., 2020.




DOI: http://dx.doi.org/10.24193/subbmath.2023.4.12

Refbacks

  • There are currently no refbacks.