Global nonexistence of solutions to a logarithmic nonlinear wave equation with innite memory and delay term
Abstract
Keywords
Full Text:
PDFReferences
Abdallah, C., Dorato, P., Benitez-Read, J., et al., Delayed positive feedback can stabilize
oscillatory system, San Francisco, CA: ACC, (1993), 3106-3107.
Al-Gharabli, M.M., Messaoudi, S.A., Existence and a general decay result for a plate
equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18(2018),
-125.
Ball, J.M., Remarks on blow up and nonexistence theorems for nonlinear evolutions
equations, Quart. J. Math. Oxford, 28(1977), 473-486.
Bartkowski, K., G orka, P., One-dimensional Klein-Gordon equation with logarithmic
nonlinearities, J. Phys. A. Math. Theor., 41(2008), 355201.
Bialynicki-Birula, I., Mycielski, J., Wave equations with logarithmic nonlinearities, Bull.
Acad. Polon. Sci., S er. Sci. Math. Astron. Phys., 23(1975), 461-466.
Boulaaras, S., Ouchenane, D., General decay for a coupled Lam e system of nonlinear
viscoelastic equations, Math. Meth. Appl. Sci., 43(2020), no. 4, 1717-1735.
Brezis, H., Functional Analysis, Sobolev Spaces and Partial Di erential Equations, New
York, Springer, 2010.
Cazenave, T., Haraux, A., Equations d' evolution avec non-lin earit e logarithmique, Ann.
Fac. Sci. Toulouse Math., 5(1980), no. 2, 21-51.
Choucha, A., Boulaaras, S., Ouchenane, D., Exponential decay of solutions for a viscoelastic
coupled Lame system with logarithmic source and distributed delay terms, Math.
Meth. Appl. Sci., 2020 (in press).
Choucha, A., Ouchenane, D., Boulaaras, S., Well posedness and stability result for a thermoelastic
laminated Timoshenko beam with distributed delay term, Math. Meth. Appl.
Sci., 43(2020), 9983-10004.
Dafermos, C.M., Asymptotic stability in viscoelasticity, Arch Ration Mech Anal.,
(1970), 297-308.
Dafermos, C.M., An abstract Volterra equation with applications to linear viscoelasticity,
J. Di er. Equ., 7(1970), 554-569.
Datko, R., Not all feedback stabilized hyperbolic systems are robust with respect to small
time delays in their feedbacks, SIAM J. Control Optim., 26(1988), no. 3, 697-713.
Datko, R., Lagnese, J., Polis, M.P., An example on the e ect of time delays in boundary
feedback stabilization of wave equations, SIAM J. Control Optim., 24(1986), no. 1, 152-
De Martino, S., Falanga, M., Godano, C., Lauro, G., Logarithmic Schrodinger-like equation
as a model for magma transport, Europhys. Lett., 63(2003), no. 3, 472-475.
Feng, H., Li, S., Global nonexistence for a semilinear wave equation with nonlinear
boundary dissipation, J. Math. Anal. Appl., 391(2012), no. 1, 255-264.
Georgiev, V., Todorova, G., Existence of solutions of the wave equation with nonlinear
damping and source terms, J. Di er. Equ., 109(1994), 295-308.
G orka, P., Logarithmic quantum mechanics: Existence of the ground state, Found Phys.
Lett., 19(2006), 591-601.
G orka, P., Convergence of logarithmic quantum mechanics to the linear one, Lett. Math.
Phys., 81(2007), 253-264.
G orka, P., Logarithmic Klein-Gordon equation, Acta Phys. Polon. B., 40(2009), 59-66.
Guo, Y., Rammaha, M.A., Blow-up of solutions to systems of nonlinear wave equations
with supercritical sources. Appl. Anal., 92(2013), 1101-1115.
Han, X., Global existence of weak solution for a logarithmic wave equation arising from
Q-ball dynamics, Bull. Korean Math. Soc., 50(2013), 275-283.
Hiramatsu, T., Kawasaki, M., Takahashi, F., Numerical study of Q-ball formation in
gravity mediation, J. Cosmol. Astropart. Phys., 6(2010), 008.
Ka ni, M., Messaoudi, S.A., Local existence and blow up of solutions
to a logarithmic nonlinear wave equation with delay, Appl. Anal., 1-18.
https://doi.org/10.1080/00036811.2018.1504029.2018.
Komornik, V., Exact Controllability and Stabilization. The Multiplier Method, Paris,
Masson-John Wiley, 1994.
Levine, H.A., Some additional remarks on the nonexistence of global solutions to nonlinear
wave equation, SIAM J. Math. Anal., 5(1974), 138-146.
Levine, H.A., Instability and nonexistence of global solutions of nonlinear wave equation
of the form Putt = Au + F(u), Trans. Amer. Math. Soc., 192(1974), 1-21.
Levine, H.A., Serrin, J., A global nonexistence theorem for quasilinear evolution equation
with dissipation, Arch. Ration. Mech. Anal., 137(1997), 341-361.
Lions, J.L., Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires,
nd ed. Paris, Dunod, 2002.
Messaoudi, S.A., Blow up in a nonlinearly damped wave equation, Math. Nachr.,
(2001), 1-7.
Ouchenane, D., A stability result of a timoshenko system in thermoelasticity of second
sound with a delay term in the internal feedback, Georgian Math. J., 21(2014), no. 4,
-489.
Ouchenane, D., Boulaaras, S.M., Alharbi, A., Cherif, B., Blow up of coupled nonlinear
Klein-Gordon system with distributed delay, strong damping, and source terms, Hindawi
J.F.S, ID 5297063, 1-9. https://doi.org/10.1155/2020/5297063, 2020.
Ouchenane, D., Zennir, K., Bayoud, M., Global nonexistence of solutions for a system
of nonlinear viscoelastic wave equation with degenerate damping and source terms, Ukr.
Math. J., 65(7)(2013), 723-739.
Rahmoune, A., Ouchenane, D., Boulaaras, D., Agarwal, S., Growth of solutions for a
coupled nonlinear Klein{Gordon system with strong damping, source, and distributed
delay terms, Adv. Di erence Equ., 2020.
DOI: http://dx.doi.org/10.24193/subbmath.2023.4.12
Refbacks
- There are currently no refbacks.