Certain geometric properties of generalized Bessel-Maitland function

Amit Soni, Deepak Bansal

Abstract


In the present study, we first introduce Generalized Bessel-Maitland function \(\mathbb{J}^{\xi }_{\zeta,a}(z)\) and then derive sufficient conditions under which the Generalized Bessel-Maitland function \(\mathbb{J}^{\xi}_{\zeta,a}(z)\) have geometric properties like univalency, starlikeness and convexity in the open unit disk \(\mathscr{D}\).

Keywords


Univalent; starlike; convex and close-to-convex function; subordination; Bessel functions; Bessel-Maitland functions

Full Text:

PDF

References


Baricz, A., Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, Vol. 1994, Springer-Verlag, Berlin, 2010.

Baricz, A, Kup an, P.A., Sz asz, R., The radius of starlikeness of normalized Bessel function of rst kind, Proc. Amer. Math. Soc., 142(2014), no. 6, 2019-2025.

Baricz, A., Poonusamy, S., Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct., 21(2010), no. 9, 641-653.

Baricz, A, Szasz, R., The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl., 12(2014), no. 5, 485-509.

Becker, J., Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, (German), J. Reine Angew. Math., 255(1972), 23-43.

Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften,

Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

MacGregor, T.H., The radius of univalence of certain analytic functions II, Proc. Amer

Math Soc., 14(1963), 521-524.

MacGregor, T.H., A class of univalent functions, Proc. Amer. Math. Soc., 15(1964),

-317.

Marichev, O.I., Handbook of Integral Transform and Higher Transcendental Functions,

Theory and Algorithm Tables, Ellis Horwood, Chichester [John Wiley and Sons], New

York, 1983.

Miller, S.S., Mocanu, P.T., Univalence of Gaussian and con

uent hypergeometric functions, Proc. Amer. Math. Soc., (1990), no. 11, 333-342.

Mocanu, P.T., Some starlike conditions for analytic functions, Rev. Roumaine Math. Pures Appl., 33(1988), 117-124.

Pescar, V., A new generalization of Ahlfors and Beckers criterion of univalence, Bull.

Malays. Math. Sci. Soc. (Second Series), 19(1996), 53-54.

Ponnusamy, S., Vuorinen, M., Univalence and convexity properties for Gaussian hyper-

geometric functions, Rocky Mountain J. Math., 31(2001), 327-353.

Prajapat, J.K., Certain geometric properties of normalized Bessel functions, Appl. Math.

Lett., 24(2011), 2133-2139.

Prajapat, J.K., Certain geometric properties of the Wright functions, Integral Trans-

form. Spec. Funct., 26(2015), no. 3, 203-212.

Ruscheweyh, St., Singh, V., On the order of starlikeness of hypergeometric functions, J.

Math. Anal. Appl., (1986), no. 113, 1-11.

Selinger, V., Geometric properties of normalized Bessel functions, Pure Math Appl.,

(1995), 273-277.

Sz asz, R., About the starlikeness of Bessel functions, Integral Transforms Spec. Funct.,

(2014), no. 9, 750-755.

Sz asz, R., Kup an, P.A., About the univalence of the Bessel functions, Stud. Univ. Babe s-

Bolyai Math, 54(2009), no. 1, 127-132.

Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge University

Press, 1962.

Xanthopoulos, X., Subclasses of starlike functions with 0; Stud. Univ. Babes-Bolyai Math., 38(1993), 39-47.




DOI: http://dx.doi.org/10.24193/subbmath.2023.4.08

Refbacks

  • There are currently no refbacks.