Certain geometric properties of generalized Bessel-Maitland function
Abstract
Keywords
Full Text:
PDFReferences
Baricz, A., Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, Vol. 1994, Springer-Verlag, Berlin, 2010.
Baricz, A, Kup an, P.A., Sz asz, R., The radius of starlikeness of normalized Bessel function of rst kind, Proc. Amer. Math. Soc., 142(2014), no. 6, 2019-2025.
Baricz, A., Poonusamy, S., Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct., 21(2010), no. 9, 641-653.
Baricz, A, Szasz, R., The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl., 12(2014), no. 5, 485-509.
Becker, J., Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, (German), J. Reine Angew. Math., 255(1972), 23-43.
Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften,
Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
MacGregor, T.H., The radius of univalence of certain analytic functions II, Proc. Amer
Math Soc., 14(1963), 521-524.
MacGregor, T.H., A class of univalent functions, Proc. Amer. Math. Soc., 15(1964),
-317.
Marichev, O.I., Handbook of Integral Transform and Higher Transcendental Functions,
Theory and Algorithm Tables, Ellis Horwood, Chichester [John Wiley and Sons], New
York, 1983.
Miller, S.S., Mocanu, P.T., Univalence of Gaussian and con
uent hypergeometric functions, Proc. Amer. Math. Soc., (1990), no. 11, 333-342.
Mocanu, P.T., Some starlike conditions for analytic functions, Rev. Roumaine Math. Pures Appl., 33(1988), 117-124.
Pescar, V., A new generalization of Ahlfors and Beckers criterion of univalence, Bull.
Malays. Math. Sci. Soc. (Second Series), 19(1996), 53-54.
Ponnusamy, S., Vuorinen, M., Univalence and convexity properties for Gaussian hyper-
geometric functions, Rocky Mountain J. Math., 31(2001), 327-353.
Prajapat, J.K., Certain geometric properties of normalized Bessel functions, Appl. Math.
Lett., 24(2011), 2133-2139.
Prajapat, J.K., Certain geometric properties of the Wright functions, Integral Trans-
form. Spec. Funct., 26(2015), no. 3, 203-212.
Ruscheweyh, St., Singh, V., On the order of starlikeness of hypergeometric functions, J.
Math. Anal. Appl., (1986), no. 113, 1-11.
Selinger, V., Geometric properties of normalized Bessel functions, Pure Math Appl.,
(1995), 273-277.
Sz asz, R., About the starlikeness of Bessel functions, Integral Transforms Spec. Funct.,
(2014), no. 9, 750-755.
Sz asz, R., Kup an, P.A., About the univalence of the Bessel functions, Stud. Univ. Babe s-
Bolyai Math, 54(2009), no. 1, 127-132.
Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge University
Press, 1962.
Xanthopoulos, X., Subclasses of starlike functions with 0; Stud. Univ. Babes-Bolyai Math., 38(1993), 39-47.
DOI: http://dx.doi.org/10.24193/subbmath.2023.4.08
Refbacks
- There are currently no refbacks.