Solution of nonlinear equations via Pad\'{e} approximation. A Computer Algebra approach
Abstract
We generate automatically several high order numerical methods for the
solution of nonlinear equation using Pad\'{e} approximation and Maple CAS.
Keywords
Full Text:
PDFReferences
bibitem {noi}Agratini, O., Blaga, P., Chiorean, I., Coman, Gh., Stancu, D.D.,
Tr^{i}mbic{t}ac{s}, R.T., emph{Numerical Analysis and Approximation
Theory} (vol. III), Cluj University Press, Cluj-Napoca, 2002 (in Romanian).
bibitem {GGK}Gander, W., Gander, M.J., Kwok, F., emph{Scientific Computing.
An Introduction Using Maple and MATLAB}, Springer, 2014.
bibitem {GaGr}Gander, W., Gruntz, D., Derivation of numerical methods using
Computer Algebra, emph{SIAM Rev.}, 41(1999), no. 3, 577-593.
bibitem {Garv}Garvan, F., emph{The Maple Book}, 1st Edition, Chapman &
Hall/CRC, 2001.
bibitem {Gautschi}Gautschi, W., Numerical Analysis, Second Edition, Springer
Science+Business Media, 2012.
bibitem {Heck}Heck, A.,emph{ Introduction to Maple}, Third Edition,
Springer-Verlag, New York, 2003.
bibitem {Pav}Pu{a}vu{a}loiu, I., Equations Solution through Interpolation,
Dacia Publishers, 1981 (in Romanian).
bibitem {SeGo}Sebah, P., Gourdon, X., Newton's method and high order
iterations, url{numbers.computation.free.fr/Constants/constants.html}
bibitem {House}Householder, A. S., emph{The Numerical Treatment of a Single
Nonlinear Equation}, McGraw-Hill, New York, (1970)
bibitem {Tr}Tr^{i}mbic{t}ac{s}, R., An application of inverse Pad'{e}
interpolation, emph{Stud. Univ. Babec{s}-Bolyai Math}. textbf{64}(2019),
No. 2, 291--296
DOI: http://dx.doi.org/10.24193/subbmath.2021.2.08
Refbacks
- There are currently no refbacks.