Triangular ideal relative convergence on modular spaces and Korovkin theorems

Selin Çınar, Sevda Yıldız

Abstract


In this paper, we introduce the concept of triangular ideal relative convergence for double sequences of functions dened on a modular space. Based upon this new convergence method, we prove Korovkin theorems. Then, we construct an example such that our new approximation results work. Finally, we discuss the reduced results which are obtained by special choices.


Keywords


Positive linear operators; the double sequences; triangular ideal relative modular convergence; Korovkin theorem

Full Text:

PDF

References


Bardaro, C., Boccuto A., Demirci, K., Mantellini, I., Orhan, S., Triangular A

approximation by double sequences of positive linear operators, Results. Math., 68(2015),

-291.

Bardaro, C., Boccuto A., Demirci, K., Mantellini, I., Orhan, S., Korovkin type theorems

for modular

p. 11.

Bardaro, C., Mantellini, I., Approximation properties in abstract modular spaces for a

class of general sampling-type operators, Appl. Anal., 85(2006), 383-413.

Bardaro, C., Mantellini, I., Korovkin's theorem in modular space, Comment. Math.,

(2007), no.2, 239-253.

Bardaro, C., Mantellini, I., A Korovkin theorem in multivarite modular function spaces,

J. Funct. Spaces Appl., 7(2009), no. 2, 105-120.

Bardaro, C., Musielak, J., Vinti, G., Nonlinear Integral Operators and Applications, de

Gruyder Series is Nonlinear Analysis and Appl., 9, Walter de Gruyter Publ., Berlin,

Bayram, N.S., Orhan, C., A

tions, Stud. Univ. Babe s-Bolyai Math., 65(2020), no. 2, 255-268.

Chittenden, E.W., On the limit functions of sequences of continuous functions converg-

ing relatively uniformly, Trans. Amer. Math. Soc., 20(1919), 179-184.

C inar, S., Triangular A

positive linear operators, Facta Univ. Ser. Math. Inform., 36(2021), no. 1, 65-77.

Demirci, K., I

Demirci, K., Dirik, F., Four-dimensional matrix transformation and rate of A

convergence of periodic functions, Mathematical and Computer Modelling, 52(2010), no.

-10, 1858-1866.

Demirci, K., Kolay, B., A

operators, Positivity, 21(2017), 847-863.

Demirci, K., Orhan, S., Statistically relatively uniform convergence of positive linear

operators, Results. Math., 69(2016), 359-367.

Demirci, K., Orhan, S., Statistical relative approximation on modular spaces, Results.

Math., 71(2017), 1167-1184.

Dirik, F., Demirci, K., Korovkin-type approximation theorem for functions of two vari-

ables in statistical sense, Turk. J. Math., 34(2010), 73-83.

Donner, K., Korovkin theorems in Lp spaces, J. Funct. Anal., 42(1981), no. 1, 12-28.

Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.

Gadjiev, A.D., Orhan, C., Some approximation theorems via statistical convergence,

Rocky Mountain J. Math., 32(2002), 129-138.

Karaku s, S., Demirci, K., Matrix summability and Korovkin type approximation theorem

on modular spaces, Acta Math. Univ. Comenianae, 79(2010), no. 2, 281-292.

Karaku s, S., Demirci, K., Duman, O., Statistical approximation by positive linear oper-

ators on modular spaces, Positivity, 14(2010), 321-334.

Korovkin, P.P., Linear Operators and Approximation Theory, Hindustan Publ. Co.,

Delhi, 1960.

Kostyrko, P., Salat, T., and Wilczynski W., I

(2000), 669-685.

Kozlowski, W.M., Modular Function Spaces, Pure Appl. Math., 122, Marcel Dekker,

Inc., New York, 1988.

Mantellini, I., Generalized sampling operators in modular spaces, Comment. Math.,

(1998), 77-92.

Moore, E.H., An Introduction to a Form of General Analysis, The New Hawen Mathe-

matical Colloquim, Yale University Press, New Hawen, 1910.

M oricz, F., Statistical convergence of multiple sequences, Arch. Math., 81(1)(2003), 82-

Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034,

Springer-Verlag, Berlin, 1983.

Musiaelak, J., Nonlinear approximation in some modular function spaces I, Math.

Japon., 38(1993), 83-90.

Orhan, S., Demirci, K., Statistical A

tion theorem on modular spaces, Positivity, 18(2014), 669-686.

Orhan, S., Demirci, K., Statistical approximation by double sequences of positive linear

operators on modular spaces, Positivity, 19(2015), 23-36.

Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq.

Math., 2(1951), 73-74.

S ahin, P., Dirik, F., Statistical relative uniform convergence of double sequence of positive

linear operators, Appl. Math., 17(2017), 207-220.

Yilmaz, B., Demirci, K., Orhan, S., Relative modular convergence of positive linear op-

erators, Positivity, 20(2016), 565-577.




DOI: http://dx.doi.org/10.24193/subbmath.2023.4.17

Refbacks

  • There are currently no refbacks.