Implicit Caputo-Fabrizio fractional differential equations with delay

Salim Krim, Said Abbas, Mouffak Benchohra, Nieto J.Juan

Abstract


This article deals with some existence and uniqueness results for several classes of implicit fractional differential equations with delay. Our results are based on some fixed point theorems. To illustrate our results, we present some examples in the last section.

Keywords


Caputo-Fabrizio fractional order derivative; implicit; delay; fixed point

Full Text:

PDF

References


Abbas, S., Benchohra, M., Graef, J.G., Henderson, J., Implicit Fractional Di erential

and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.

Abbas, S., Benchohra, M., N'Gu er ekata, G.M., Topics in Fractional Di erential Equa-

tions, Springer, New York, 2012.

Abbas, S., Benchohra, M., N'Gu er ekata, G.M., Advanced Fractional Di erential and

Integral Equations, Nova Science Publishers, New York, 2015.

Abbas, S., Benchohra, M., Nieto, J.J., Functional implicit hyperbolic fractional order

di erential equations with delay, Afr. Diaspora J. Math., 15(2013), no. 1, 74-96.

Abbas, S., Benchohra, M., Vityuk, A.N., On fractional order derivatives and Darboux

problem for implicit di erential equations, Frac. Calc. Appl. Anal., 15(2012), 168-182.

Albarakati, W., Benchohra, M., Lazreg, J.E., Nieto, J.J., Anti-periodic boundary value

problem for nonlinear implicit fractional di erential equations with impulses, Analele

Univ. Oradea Fasc. Mat., 25(2018), no. 1, 13-24.

Appell, J., Implicit functions, nonlinear integral equations, and the measure of noncom-

pactness of the superposition operator, J. Math. Anal. Appl., 83(1981), 251-263.

Benchohra, M., Bouriah, S., Henderson, J., Existence and stability results for nonlinear

implicit neutral fractional di erential equations with nite delay and impulses, Comm.

Appl. Nonlinear Anal., 22(2015), no. 1, 46-67.

Benchohra, M., Lazreg, J.E., On stability for nonlinear implicit fractional di erential

equations, Matematiche (Catania), 70(2015), no. 2, 49-61.

Benchohra, M., Lazreg, J.E., Existence and Ulam stability for nonlinear implicit frac-

tional di erential equations with Hadamard derivatives, Stud. Univ. Babe s-Bolyai Math.,

(2017), no. 1, 27-38.

Caputo, M., Fabrizio, M., A new de nition of fractional derivative without singular

kernel, Prog. Fract. Di er. Appl., 2015, no. 1, 73-85.

Granas, A., Dugundji, J., Fixed Point Theory, Springer-Verlag, New York, 2003.

Hale, J.K., Kato, J., Phase space for retarded equations with in nite delay, Funkcial.

Ekvac., 21(1978), 11-41.

Hale, J.K., Verduyn Lunel, S.M., Introduction to Functional-Di erential Equations,

Springer-Verlag, New York, 1991.

Hern andez, E., On abstract di erential equations with state dependent non-local condi-

tions, J. Math. Anal. Appl., 466(2018), no. 1, 408-425.

Hern andez, E., Azevedo, K.A.J., Rolnik, V., Wellposedness of abstract di erential equa-

tions with state dependent delay, Math. Nachrichten, 291(2018), no. 13, 2045-2056.

Hern andez, E., Fernandes, D., Wu, J., Well-posedness of abstract integro-di erential

equations with state-dependent delay, Proc. Amer. Math. Soc., 148(2020), no. 4, 1595-

Hino, Y., Murakami, S., Naito, T., Functional Di erential Equations with In nite Delay,

Lecture Notes in Math., 1473, Springer-Verlag, Berlin, Heidelberg, New York, 1991.

Hino, Y., Murakami, S., Naito, T., Minh, N.V., A variation-of-constants formula for

abstract functional di erential equations in phase space, J. Di erential Equations,

(2002), 336-355.

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional

Di erential Equations, Elsevier Science B.V., Amsterdam, 2006.

Krim, S., Abbas, S., Benchohra, M., Darwish, M.A., Boundary value problem for implicit

Caputo{Fabrizio fractional di erential equations, Int. J. Di erence Equ., 15(2020), no.

, 493-510.

Kucche, K.D., Nieto, J.J., Venktesh, V., Theory of nonlinear implicit fractional di er-

ential equations, Di er. Equ. Dynam. Syst., 28(2020), 117.

Losada, J., Nieto, J.J., Properties of a new fractional derivative without singular kernel,

Prog. Fract. Di er. Appl., 2015, no. 1, 87-92.

Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives. Theory

and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.

Tarasov, V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics

of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing,

Tenreiro Machado, J.A., Kiryakova, V., The chronicles of fractional calculus, Fract. Calc.

Appl. Anal., 20(2017), 307-336.

Vityuk, A.N., Mykhailenko, A.V., The Darboux problem for an implicit fractional-order

di erential equation, J. Math. Sci., 175(2011), no. 4, 391-401.

Zhou, Y., Basic Theory of Fractional Di erential Equations,World Scienti c, Singapore,




DOI: http://dx.doi.org/10.24193/subbmath.2023.4.03

Refbacks

  • There are currently no refbacks.