Nonlinear elliptic equations by topological degree in Musielak-Orlicz-Sobolev spaces

Mustapha AIT HAMMOU, Badr Lahmi

Abstract


We prove by using the topological degree theory the existence of at least one weak solution for the nonlinear elliptic equation
\[-\text{ div }a_1(x,\nabla u)+ a_0(x, u)=  f(x,u,\nabla u)\]
with homogeneous Dirichlet boundary condition in Musielak-Orlicz-Sobolev spaces.


Keywords


Nonlinear elliptic equation, Musielak-Orlicz-Sobolev space, topological degree.

Full Text:

PDF

References


Benkirane, A., Elmahi, A., An existence for a strongly nonlinear elliptic problem in

Orlicz spaces, Nonlinear Anal., 36(1999), 11-24.

Benkirane, A., Sidi El Vally, M., An existence result for nonlinear elliptic equations in

Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin, 20(2013), 57-75.

Bendahmane, M., Wittbold, P., Renormalized solutions for nonlinear elliptic equations

with variable exponents and L1 data, Nonlinear Anal., 70(2009), no. 2, 567-583.

Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type

mappings, J. Di erential Equations, 234(2007), 289-310.

Berkovits, J., Mustonen, V., On topological degree for mappings of monotone type, Nonlinear

Anal., 10(1986), 1373-1383.

Diening, L., Maximal function on Musielak-Orlicz spaces and generalized Lebesgue

spaces, Bull. Sci. Math., 129(2005), no. 8, 657-700.

Dong, G., Fang, X., Di erential equations of divergence form in separable Musielak-

Orlicz-Sobolev spaces, Bound. Value Probl., (2016), 2016:106.

Fan, X., Di erential equations of divergence form in Musielak-Sobolev spaces and a sub-

supersolution method, J. Math. Anal. Appl., 386(2012), 593-604.

Fan, X.L., Guan, C.X., Uniform convexity of Musielak-Orlicz-Sobolev spaces and appli-

cations, Nonlinear Anal., 73(2010), 163-175.

Gossez, J.-P., A strongly non-linear elliptic problem in Orlicz-Sobolev spaces, In: Proc.

Sympos. Pure Math., 45(1986), 455-462.

Gwiazda, P., Swierczewska-Gwiazda, A., On steady non-newtonian

uids with growth

conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., 32(2008), no.

, 103-113.

Gwiazda, P., Swierczewska-Gwiazda, A., On non-newtonian

uids with the property of

rapid thickening under di erent stimulus, Math. Models Methods Appl. Sci., 18(2008),

-1092.

Gwiazda, P., Swierczewska-Gwiazda, A., Wr oblewska, A., Monotonicity methods in gen-

eralized Orlicz spaces for a class of non-Newtonian

uids, Math. Methods Appl.Sci.,

(2010), 125-137.

Harjulehto, P., Hasto, P., Riesz potential in generalized Orlicz spaces, Forum Math.,

(2017), no. 1, 229-244.

Hudzik, H., On generalized Orlicz-Sobolev space, Funct. Approx. Comment. Math.,

(1976), 37-51.

Kim, I.S., Hong, S.J., A topological degree for operators of generalized (S+) type, Fixed

Point Theory Appl., (2015), 2015:194.

Klawe, F.Z., Thermo-visco-elasticity for models with growth conditions in Orlicz spaces,

Topol. Methods Nonlinear Anal., 47(2016), no. 2, 457-497.

Kov a cik, O., R akosn k, J., On spaces Lp(x) and W1;p(x), Czechoslovak Math. J., 41

(1991), 592-618.

Le, V.K., On a sub-supersolution method for variational inequalities with Leray-Lions

operators in variable exponent spaces, Nonlinear Anal., 71(2009), 3305-3321.

Liu, D., Zhao, P., Solutions for a quasilinear elliptic equation in Musielak-Sobolev spaces,

Nonlinear Anal. Real World Appl., 26(2015), 315-329.

Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034,

Springer-Verlag, Berlin, 1983.

R_u zi cka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture

Notes in Math., Vol. 1748, Springer-Verlag, Berlin, 2000.

Youss , A., Azroul, E., Lahmi, B., Nonlinear parabolic equations with nonstandard growth, Appl. Anal., 95(2016), no. 12, 2766-2778.




DOI: http://dx.doi.org/10.24193/subbmath.2023.4.13

Refbacks

  • There are currently no refbacks.