Existence of solutions for fractional boundary value problems with Riesz space derivative and nonlocal conditions
Abstract
Keywords
Full Text:
PDFReferences
Agarwal, R., O'Regan, D., Stanek, S., Positive solutions for Dirichlet problems of sin-
gular nonlinear fractionaldi erential equations, J. Math. Anal. Appl., 371(2010), 57-68.
Babakhani, A., Gejji, V., Existence of positive solutions of nonlinear fractional di er-
ential equations, J. Math. Anal. Appl., 278(2003), 434-442.
Benchohra, M., Hamani, S., Ntouyas, S., Boundary value problems for di erential equa-
tions with fractional orderand nonlocal conditions, Nonlinear Anal. TMA, 71(2009),
-2396.
Boucherif, A., Precup, R., On the nonlocal initial value problem for rst order di erential
equations, Fixed Point Theory, 4(2)(2003), 205-212.
Byszewski, L., Theorems about existence and uniqueness of solutions of a semilinear
evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162(1991), 494-505.
Byszewski, L., Lakshmikantham, V., Theorem about the existence and uniqueness of a
solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal. 40(1991),
-19.
Celik, C., Duman, M., Crank-Nicolson method for the fractional di usion equation with
the Riesz fractional derivative, J. Comput. Phys., 231(2012), 1743-1750.
Chen, F., Chen, A., Wu, X., Anti-periodic boundary value problems with Riesz-Caputo
derivative, Adv. Di erence Equ., 2019(2019), 119.
Chen, T., Liu, W., An anti-periodic boundary value problem for the fractional di erential
equation with a p-Laplacian operator, Appl. Math. Lett., 25(2012), 1671-1675.
Chen, Y., Nieto, J., O'Regan, D., Anti-periodic solutions for evolution equations asso-
ciated with maximal monoton mappings, Appl. Math. Lett., 24(2011), no. 3, 302-307.
Cui, Y., Uniqueness of solution for boundary value problems for fractional di erential
equations, Appl. Math. Lett., 51(2016), 48-54.
Darwish, M., Ntouyas, S., On initial and boundary value problems for fractional order
mixed type functional di erential inclusion, Comput. Math. Appl., 59(2010), 1253-1265.
Goren
o, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P., Discrete random walk
models for space-time fractional di usion, Chem. Phys., 284(2012), 521-541.
Goudarzi, H., Shivanian, E., Ghoncheh, Weak solutions to a system of nonlinear frac-
tional boundary value problems via variational form, Bull. Malays. Math. Sci. Soc.,
(2020), 1585-1601.
Gu, C., Wu, G., Positive solutions of fractional di erential equations with the Riesz
space derivative, Appl. Math. Lett., 95(2019), 59-64.
Guo, L., Liu, L., Ye, W., Uniqueness of iterative positive solutions for the singular frac-
tional di erential equations with integral boundary conditions, Computers and Mathe-
matics with Applications, 59(8)(2010), 2601-2609.
Kilbas, A., Srivastava, H., Trujillo, J., Theory and Applications of Fractional Di erential
Equations, vol. 204, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
Mali, A.D., Kucche, K.D., Nonlocal boundary value problem for generalized Hilfer im-
plicit fractional di erential equations, Math. Methods Appl. Sci., 43(15)(2020), 8608-
Miller, K., Ross, B., An Introduction to the Fractional Calculus and Fractional Di er-
ential Equations, John Wiley, NY, 1993.
N'G ere ekata, G.M., A Cauchy problem for for some fractional abstract di erential equa-
tions with fractional order with nonlocal conditions, Nonlinear Anal., 70(2009), 1873-
Ntouyas, S.K., Tsamatos, P.Ch., Global existence for semilinear evolution equations with
nonlocal conditions, J. Math. Anal. Appl., 210(1997), 67-687.
Podlubny, I., Fractional Di erential Equations, Academic Press, San Diego, CA, 1999.
Podlubny, I., Geometric and physical interpretation of fractional integration and frac-
tional di erentiation, Fract. Calculus Appl. Anal., 5(2002), 367-386.
Shen, S., Liu, F., Anh, V., Numerical approximations and solution techniques for the
Caputo-time Riesz-Caputo fractional advection-di usion equation, Numer. Algorithms,
(2011), 383-403.
Toprakseven, S ., The existence and uniqueness of initial-boundary value problems of the
fractional Caputo-Fabrizio di erential equations, Universal Journal of Mathematics and
Applications, 2.2(2019), 100-106.
Toprakseven, S ., The existence of positive solutions and a Lyapunov type inequality for
boundary value problems of the fractional Caputo-Fabrizio di erential equations, Sigma
Journal of Engineering and Natural Sciences, 37.4(2019), 1129-1137.
Toprakseven, S ., Existence and uniqueness of solutions to Riesz-Caputo impulsive frac-
tional boundary value problems, Journal of Interdisciplinary Mathematics, 24.8(2021),
-2086.
Toprakseven, S ., Existence and uniqueness of solutions to anti-periodic Riezs-Caputo
impulsive fractional boundary value problems, Tbilisi Mathematical Journal, 14.1(2021),
-82.
Toprakseven, S ., On the solutions of the higher order fractional di erential equations
of Riesz space derivative with anti-periodic boundary conditions, Communications in
Advanced Mathematical Sciences, 4.4(2021), 171-179.
Toprakseven, S ., The existence of positive solutions for the Caputo-Fabrizio fractional
boundary value problems at resonance, Turkish Journal of Mathematics and Computer
Science, 15.1(2023), 71-78.
Webb, J.R.L., Infante, G., Non-local boundary value problems of arbitrary order, J. Lond.
Math. Soc., 79(1)(2009), 238-258.
Wu, G., Baleanu, D., et al., Lattice fractional di usion equation in terms of a Riesz-
Caputo di erence, Physics A, 438(2015), 335-339.
Zhang, X., Liu, L., Wu, Y., The uniqueness of positive solution for a fractional order
model of turbulent
ow in a porous medium, Appl. Math. Lett., 37(2014), 26-33.
DOI: http://dx.doi.org/10.24193/subbmath.2023.4.01
Refbacks
- There are currently no refbacks.