Existence of solutions for fractional boundary value problems with Riesz space derivative and nonlocal conditions
DOI:
https://doi.org/10.24193/subbmath.2023.4.01Keywords:
Fractional boundary value problem, Riesz-Caputo fractional derivative, existence and uniqueness, fixed point, nonlocal conditionsAbstract
By using the fixed point theorems, we give sufficient conditions for the existence and uniqueness of solutions for the nonlocal fractional boundary value problem of nonlinear Riesz-Caputo differential equation. The boundedness assumption on the nonlinear term is replaced by growth conditions or by a continuous function. Finally, some examples are presented to illustrate the applications of the obtained results.References
Agarwal, R., O'Regan, D., Stanek, S., Positive solutions for Dirichlet problems of sin-
gular nonlinear fractionaldi erential equations, J. Math. Anal. Appl., 371(2010), 57-68.
Babakhani, A., Gejji, V., Existence of positive solutions of nonlinear fractional di er-
ential equations, J. Math. Anal. Appl., 278(2003), 434-442.
Benchohra, M., Hamani, S., Ntouyas, S., Boundary value problems for di erential equa-
tions with fractional orderand nonlocal conditions, Nonlinear Anal. TMA, 71(2009),
-2396.
Boucherif, A., Precup, R., On the nonlocal initial value problem for rst order di erential
equations, Fixed Point Theory, 4(2)(2003), 205-212.
Byszewski, L., Theorems about existence and uniqueness of solutions of a semilinear
evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162(1991), 494-505.
Byszewski, L., Lakshmikantham, V., Theorem about the existence and uniqueness of a
solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal. 40(1991),
-19.
Celik, C., Duman, M., Crank-Nicolson method for the fractional di usion equation with
the Riesz fractional derivative, J. Comput. Phys., 231(2012), 1743-1750.
Chen, F., Chen, A., Wu, X., Anti-periodic boundary value problems with Riesz-Caputo
derivative, Adv. Di erence Equ., 2019(2019), 119.
Chen, T., Liu, W., An anti-periodic boundary value problem for the fractional di erential
equation with a p-Laplacian operator, Appl. Math. Lett., 25(2012), 1671-1675.
Chen, Y., Nieto, J., O'Regan, D., Anti-periodic solutions for evolution equations asso-
ciated with maximal monoton mappings, Appl. Math. Lett., 24(2011), no. 3, 302-307.
Cui, Y., Uniqueness of solution for boundary value problems for fractional di erential
equations, Appl. Math. Lett., 51(2016), 48-54.
Darwish, M., Ntouyas, S., On initial and boundary value problems for fractional order
mixed type functional di erential inclusion, Comput. Math. Appl., 59(2010), 1253-1265.
Goren
o, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P., Discrete random walk
models for space-time fractional di usion, Chem. Phys., 284(2012), 521-541.
Goudarzi, H., Shivanian, E., Ghoncheh, Weak solutions to a system of nonlinear frac-
tional boundary value problems via variational form, Bull. Malays. Math. Sci. Soc.,
(2020), 1585-1601.
Gu, C., Wu, G., Positive solutions of fractional di erential equations with the Riesz
space derivative, Appl. Math. Lett., 95(2019), 59-64.
Guo, L., Liu, L., Ye, W., Uniqueness of iterative positive solutions for the singular frac-
tional di erential equations with integral boundary conditions, Computers and Mathe-
matics with Applications, 59(8)(2010), 2601-2609.
Kilbas, A., Srivastava, H., Trujillo, J., Theory and Applications of Fractional Di erential
Equations, vol. 204, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
Mali, A.D., Kucche, K.D., Nonlocal boundary value problem for generalized Hilfer im-
plicit fractional di erential equations, Math. Methods Appl. Sci., 43(15)(2020), 8608-
Miller, K., Ross, B., An Introduction to the Fractional Calculus and Fractional Di er-
ential Equations, John Wiley, NY, 1993.
N'G ere ekata, G.M., A Cauchy problem for for some fractional abstract di erential equa-
tions with fractional order with nonlocal conditions, Nonlinear Anal., 70(2009), 1873-
Ntouyas, S.K., Tsamatos, P.Ch., Global existence for semilinear evolution equations with
nonlocal conditions, J. Math. Anal. Appl., 210(1997), 67-687.
Podlubny, I., Fractional Di erential Equations, Academic Press, San Diego, CA, 1999.
Podlubny, I., Geometric and physical interpretation of fractional integration and frac-
tional di erentiation, Fract. Calculus Appl. Anal., 5(2002), 367-386.
Shen, S., Liu, F., Anh, V., Numerical approximations and solution techniques for the
Caputo-time Riesz-Caputo fractional advection-di usion equation, Numer. Algorithms,
(2011), 383-403.
Toprakseven, S ., The existence and uniqueness of initial-boundary value problems of the
fractional Caputo-Fabrizio di erential equations, Universal Journal of Mathematics and
Applications, 2.2(2019), 100-106.
Toprakseven, S ., The existence of positive solutions and a Lyapunov type inequality for
boundary value problems of the fractional Caputo-Fabrizio di erential equations, Sigma
Journal of Engineering and Natural Sciences, 37.4(2019), 1129-1137.
Toprakseven, S ., Existence and uniqueness of solutions to Riesz-Caputo impulsive frac-
tional boundary value problems, Journal of Interdisciplinary Mathematics, 24.8(2021),
-2086.
Toprakseven, S ., Existence and uniqueness of solutions to anti-periodic Riezs-Caputo
impulsive fractional boundary value problems, Tbilisi Mathematical Journal, 14.1(2021),
-82.
Toprakseven, S ., On the solutions of the higher order fractional di erential equations
of Riesz space derivative with anti-periodic boundary conditions, Communications in
Advanced Mathematical Sciences, 4.4(2021), 171-179.
Toprakseven, S ., The existence of positive solutions for the Caputo-Fabrizio fractional
boundary value problems at resonance, Turkish Journal of Mathematics and Computer
Science, 15.1(2023), 71-78.
Webb, J.R.L., Infante, G., Non-local boundary value problems of arbitrary order, J. Lond.
Math. Soc., 79(1)(2009), 238-258.
Wu, G., Baleanu, D., et al., Lattice fractional di usion equation in terms of a Riesz-
Caputo di erence, Physics A, 438(2015), 335-339.
Zhang, X., Liu, L., Wu, Y., The uniqueness of positive solution for a fractional order
model of turbulent
ow in a porous medium, Appl. Math. Lett., 37(2014), 26-33.