On generalized close-to-convexity related with strongly Janowski functions
Abstract
Janowski functions of strongly type are used to define certain classes of
analytic functions which generalize the concept of close-to-convexity and
bounded boundary rotation. Coefficient results, a necessary condition,
distortion bounds, Hankel determinant problem and several other interesting
properties of these classes are studied. Some significant well known results
are derived as special cases.
Keywords
Full Text:
PDFReferences
Bernardi, S.D., Convex and starlike univalent functions, Trans. Amer. Mat. Soc.,
(1969), 429-446.
Brannan, D.A., On functions of bounded boundary rotation, Proc. Edinburg Math. Soc.,
(1968), 339-347.
Brannan, D.A., Clunie, J.G., Kirwan, W.E., On the coe cient problem for the functions
of bounded boundary rotation, Ann. Acad. Sci. Fenn. Series A1, 523(1973), 1-18.
Cantor, D.G., Power series with integral coe cients, Bull. Amer. Math. Soc., 69(1963),
-366.
Edrei, A., Sur les determinants recurrents et les singularites d'un fonction donnee par
son developpement de Taylor, Compos. Math., 7(1940), 20-88.
Goodman, A.W., On close-to-convex functions of higher order, Ann. Univ. Sci. Bu-
dapest, Eotous Sect. Math., 25(1972), 17-30.
Goodman, A.W., Univalent Functions, Vols. I and II, Polygonal Publishing House,
Washington, New Jersey, 1983.
Hayman, W.K., On functions with positive real part, J. London Math. Soc., 36(1961),
-48.
Janowski, W., Some extremal problems for certain families of analytic functions, Ann.
Polon. Math., 28(1973), 279-326.
Kaplan, W., Close-to-convex Schlicht functions, Mich. Math. J., 1(1952), 169-185.
Kumar, S.S., Kumar, V., Ravichandran, V., Cho, E., Su cient conditions for starlike
functions associated with the lemniscate of Bernoulli, J. Inequal. Appl., 176(2013), 13
pages.
Noonan, J.W., Thomas, D.K., On the Hankel determinant of areally mean p-valent
functions, Proc. London Math. Soc., 25(1972), 503-524.
Noor, K.I., On the Hankel determinants of close-to-convex univalent functions, J. Math.
Math. Sci., 3(1980), 477-481.
Noor, K.I., Hankel determinant problem for functions of bounded boundary rotations,
Rev. Roum. Math. Pures Appl., 28(1983), 731-739.
Noor, K.I., On subclasses of close-to-convex functions of higher order, Int. J. Math.
Math. Sci., 15(1992), 279-290.
Noor, K.I., On certain analytic functions related with strongly close-to-convex functions,
Appl. Math. Comput., 197(2008), 149-157.
Noor, K.I., Some properties of analytic functions with bounded radius rotations, Compl.
Var. Ellipt. Eqn., 54(2009), 865-877.
Padmanabhan, K.S., Parvatham, R., Properties of a class of functions with bounded
boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
Pinchuk, B., Functions with bounded boundary rotation, Israel J. Math., 10(1971), 7-16.
Pommerenke, C., On starlike and close-to-convex functions, Proc. London Math. Soc.,
(1963), 290-304.
Pommerenke, C., On the coe cients and Hankel determinant of univalent functions, J.
London Math. Soc., 41(1966), 111-122.
Rogosinski, W., On the coe cents of subordinate functions, Proc. Lond. Math. Soc.,
(1943), 48-82.
Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975),
-115.
Ruscheweyh, S., Sheil-Small, T., Hadamard product of Schlicht functions and the polya-
Schoenberg conjecture, Comment. Math. Helv., 48(1973), 119-135.
Silvia, E.M., Subclasses of close-to-convex functions, Int. J. Math. Math. Sci., 6(1983),
-458.
DOI: http://dx.doi.org/10.24193/subbmath.2023.4.09
Refbacks
- There are currently no refbacks.