A class of harmonic univalent functions associated with modifed q-Catas operator
Abstract
Keywords
Full Text:
PDFReferences
eferences
F. M. AL-Oboudi, On univalent functions deÖned by a generalized
Salagean operator, Internat. J. Math. Math. Sci., 27 (2004), 1429-1436.
M. H. Annby and Z. S. Mansour, qFractional Calculas Equations, Lecture Noes in Math., 2056, Springer-Verlag Berlin Heidelberg, 2012.
M. K. Aouf, A subclass of Salagean-type harmonic univalent functions,
Acta Univ. Apulensis, (2011), no. 25, 263-275.
M. K. Aouf, H. E. Darwish and G. S. Salagean, On a generalaization of
starlike functions with negative coe¢ cients, Math. Tome 43, 66 (2001),
no. 1, 3-10.
M. K. Aouf and S. M. Madian, Neighborhoods properties for certain
multivalent analytic functions associated with q pvalent Catas operator, J. Taibah Univ. for Science, 14(2020), no. 1,
M. K. Aouf and A. O. Mostafa, Subordination results for analytic functions associated with fractional q-calculus operators with complex order,
Afrika Matematika (2020) 31:1387ñ1396.
M. K. Aouf and A. O. Mostafa, Some properties of a subclass of uniformly convex function with negative coe¢ cients, Demonstratio Math.,
(2008), no. 2, 1-18.
M.K.Aouf, A. O. Mostafa, and E. A. Adwan, Subclass of multivalent
harmonic functions deÖned by Wright generalized hypergeometric functions, J. Complex Analysis Volume 2013, Article ID 397428, 1-7.
M. K. Aouf, A. O. Mostafa and F. Y. AL-Quhali, A class of uniformly
univalent functions deÖned by Salagean type qdi§erence operator,
Acta Univ. Apulensis, (2019), no. 60. 19-35.
M. K. Aouf, A. O. Mostafa , A. Shamandy and E. A. Adwan, Subclass
of harmonic univalent functions deÖned by Dziok-Srivastafa operator,
LE Matimatiche, 68(2013), no. I, 165ñ177.
M. K. Aouf, A. O. Mostafa, A. A. Shamandy and A. K. Wagdy, A study
on certain class of harmonic functions of complex order associated with
convolution, LE Matimatiche, 67 (2012), no. 2, 169ñ183.
M. K. Aouf and T. M. Seoudy, Convolution properties for classes of
bounded analytic functions with complex order deÖned by qderivative
operator, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 113
(2019), no. 2, 1279-1288.
A. Aral, V. Gupta, and R. P. Agarwal, Applications of qCalculus in
Operator Theory, Springer, New York, USA, 2013.
A. Catas, G.I. Oros and G. Oros, Di§erential subordinations associated
with multiplier transformations, Abstract Appl. Anal., 2008 (2008), ID
, 1-11.
N. E. Cho and T. H. Kim, Multiplier transformations and strongly closeto-convex functions, Bull. Korean Math. Soc., 40 (2003), no. 3, 399-410.
N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions deÖned by a class of multiplier transformations, Math.
Comput. Modelling, 37 (2003), no. 1-2, 39-49.
J. Clunie and T. Shell-Small, Harmonic univalent functions, Ann. Acad.
Sci. Fenn. Ser. A. I. Math., 9, (1984), 3-25.
K. K. Dixit, S. Porwal, A subclass of harmonic univalent functions with
positive coe¢ cients, Tamkang J. Math., 41(3) (2010), 261-269.
B. A. Frasin and G. Murugusundaramoorthy, A subordination results
for a class of analytic functions deÖned by q-di§erential operator, Ann.
Univ. Paedagog. Crac. Stud. Math. 19 (2020), 53-64.
G. Gasper and M. Rahman, Basic Hypergeometric Series, Combridge
Univ. Press, Cambrididge, U. K., 1990.
M. Govindaraj and S. Sivasubramanian, On a class of analytic function
related to conic domains involving qcalculus, Analysis Math., 43 (3)
(2017), no. 5, 475-487.
F. H. Jackson, On q-functions and a certain di§erence operator, Trans.
Royal. Soc. Edinburgh, 46 (1908), 253-281.
J.M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type
harmonic univalent functions, Southwest J. Pure Appl. Math., 2 (2002),
-82.
A. O. Mostafa, M. K. Aouf, A. Shamandy and E. A. Adwan, Subclass of
harmonic univalent functions deÖned by modiÖed Catas operator, Acta
Univ. Apulensis, (2012), no. 32, 1-12.
S. Porwal, On a new subclass of harmonic univalent functions deÖned by
multiplier transformation, Mathematica Moravica, 19-2(2015), 75-87.
S. Porwal, K.K. Dixit, New subclasses of harmonic starlike and convex
functions, Kyungpook Math. J., 53(2013), 467-478.
S. Porwal, K.K. Dixit, On a new subclass of Salagean-type harmonic
univalent functions, Indian J. Math., 54(2) (2012), 199-210.
C. Ramachandran, T. Soupramanien, and B.A. Frasin, New subclasses
of analytic function associated with q-di§erence operator, Eur. J. Pure
Appl. Math, Vol. 10, No. 2, 2017, 348-362.
G. Salagean, Subclasses of univalent functions, Lect. Notes in Math.,
(SpringerVerlag), 1013 (1983), 362-372.
T. M. Seoudy and M. K. Aouf, Coe¢ cient estimates of new classes of
qstarlike and qconvex functions of complex order, J. Math. Ineq., 10
(2016), no. 1, 135-145.
H. M. Srivastava, M. K. Aouf and A. O. Mostafa, Some properties of analytic functions associated with fractional q calculus operators, Miskolc
Math. Notes, 20 (2019), no. 2, 1245ñ1260.
H. M. Srivastava, A. O. Mostafa, M. K. Aouf and H. M. Zayed, Basic and fractional qcalculus and associated Fekete-Szeg o problem for
pvalently qstarlike functions and pvalently qconvex functions of
complex order, Miskolc Math. Notes, 20 (2019), no. 1, 489-509.
B.A. Uralegaddi, C. Somanatha, Certain Classes of Univalent Functions, in Current Topics in Analytic Function Theory, 371-374, World Sci. Publishing, River Edge, New Jersey, London, Hong Kong, 1992, 371-
DOI: http://dx.doi.org/10.24193/subbmath.2024.4.02
Refbacks
- There are currently no refbacks.