A class of harmonic univalent functions associated with modifed q-Catas operator

Adela O. Mostafa, Mohamed K. Aouf

Abstract


Using the modified q-Catas operator, we define a class of harmonic univalent functions and obtain various propertis for functions in this class.

Keywords


Harmonic functions, modified q-Catas operator, coefficients estimate, extreme points

Full Text:

PDF

References


eferences

F. M. AL-Oboudi, On univalent functions deÖned by a generalized

Salagean operator, Internat. J. Math. Math. Sci., 27 (2004), 1429-1436.

M. H. Annby and Z. S. Mansour, qFractional Calculas Equations, Lecture Noes in Math., 2056, Springer-Verlag Berlin Heidelberg, 2012.

M. K. Aouf, A subclass of Salagean-type harmonic univalent functions,

Acta Univ. Apulensis, (2011), no. 25, 263-275.

M. K. Aouf, H. E. Darwish and G. S. Salagean, On a generalaization of

starlike functions with negative coe¢ cients, Math. Tome 43, 66 (2001),

no. 1, 3-10.

M. K. Aouf and S. M. Madian, Neighborhoods properties for certain

multivalent analytic functions associated with q pvalent Catas operator, J. Taibah Univ. for Science, 14(2020), no. 1,

M. K. Aouf and A. O. Mostafa, Subordination results for analytic functions associated with fractional q-calculus operators with complex order,

Afrika Matematika (2020) 31:1387ñ1396.

M. K. Aouf and A. O. Mostafa, Some properties of a subclass of uniformly convex function with negative coe¢ cients, Demonstratio Math.,

(2008), no. 2, 1-18.

M.K.Aouf, A. O. Mostafa, and E. A. Adwan, Subclass of multivalent

harmonic functions deÖned by Wright generalized hypergeometric functions, J. Complex Analysis Volume 2013, Article ID 397428, 1-7.

M. K. Aouf, A. O. Mostafa and F. Y. AL-Quhali, A class of uniformly

univalent functions deÖned by Salagean type qdi§erence operator,

Acta Univ. Apulensis, (2019), no. 60. 19-35.

M. K. Aouf, A. O. Mostafa , A. Shamandy and E. A. Adwan, Subclass

of harmonic univalent functions deÖned by Dziok-Srivastafa operator,

LE Matimatiche, 68(2013), no. I, 165ñ177.

M. K. Aouf, A. O. Mostafa, A. A. Shamandy and A. K. Wagdy, A study

on certain class of harmonic functions of complex order associated with

convolution, LE Matimatiche, 67 (2012), no. 2, 169ñ183.

M. K. Aouf and T. M. Seoudy, Convolution properties for classes of

bounded analytic functions with complex order deÖned by qderivative

operator, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 113

(2019), no. 2, 1279-1288.

A. Aral, V. Gupta, and R. P. Agarwal, Applications of qCalculus in

Operator Theory, Springer, New York, USA, 2013.

A. Catas, G.I. Oros and G. Oros, Di§erential subordinations associated

with multiplier transformations, Abstract Appl. Anal., 2008 (2008), ID

, 1-11.

N. E. Cho and T. H. Kim, Multiplier transformations and strongly closeto-convex functions, Bull. Korean Math. Soc., 40 (2003), no. 3, 399-410.

N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions deÖned by a class of multiplier transformations, Math.

Comput. Modelling, 37 (2003), no. 1-2, 39-49.

J. Clunie and T. Shell-Small, Harmonic univalent functions, Ann. Acad.

Sci. Fenn. Ser. A. I. Math., 9, (1984), 3-25.

K. K. Dixit, S. Porwal, A subclass of harmonic univalent functions with

positive coe¢ cients, Tamkang J. Math., 41(3) (2010), 261-269.

B. A. Frasin and G. Murugusundaramoorthy, A subordination results

for a class of analytic functions deÖned by q-di§erential operator, Ann.

Univ. Paedagog. Crac. Stud. Math. 19 (2020), 53-64.

G. Gasper and M. Rahman, Basic Hypergeometric Series, Combridge

Univ. Press, Cambrididge, U. K., 1990.

M. Govindaraj and S. Sivasubramanian, On a class of analytic function

related to conic domains involving qcalculus, Analysis Math., 43 (3)

(2017), no. 5, 475-487.

F. H. Jackson, On q-functions and a certain di§erence operator, Trans.

Royal. Soc. Edinburgh, 46 (1908), 253-281.

J.M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type

harmonic univalent functions, Southwest J. Pure Appl. Math., 2 (2002),

-82.

A. O. Mostafa, M. K. Aouf, A. Shamandy and E. A. Adwan, Subclass of

harmonic univalent functions deÖned by modiÖed Catas operator, Acta

Univ. Apulensis, (2012), no. 32, 1-12.

S. Porwal, On a new subclass of harmonic univalent functions deÖned by

multiplier transformation, Mathematica Moravica, 19-2(2015), 75-87.

S. Porwal, K.K. Dixit, New subclasses of harmonic starlike and convex

functions, Kyungpook Math. J., 53(2013), 467-478.

S. Porwal, K.K. Dixit, On a new subclass of Salagean-type harmonic

univalent functions, Indian J. Math., 54(2) (2012), 199-210.

C. Ramachandran, T. Soupramanien, and B.A. Frasin, New subclasses

of analytic function associated with q-di§erence operator, Eur. J. Pure

Appl. Math, Vol. 10, No. 2, 2017, 348-362.

G. Salagean, Subclasses of univalent functions, Lect. Notes in Math.,

(SpringerVerlag), 1013 (1983), 362-372.

T. M. Seoudy and M. K. Aouf, Coe¢ cient estimates of new classes of

qstarlike and qconvex functions of complex order, J. Math. Ineq., 10

(2016), no. 1, 135-145.

H. M. Srivastava, M. K. Aouf and A. O. Mostafa, Some properties of analytic functions associated with fractional q calculus operators, Miskolc

Math. Notes, 20 (2019), no. 2, 1245ñ1260.

H. M. Srivastava, A. O. Mostafa, M. K. Aouf and H. M. Zayed, Basic and fractional qcalculus and associated Fekete-Szeg o problem for

pvalently qstarlike functions and pvalently qconvex functions of

complex order, Miskolc Math. Notes, 20 (2019), no. 1, 489-509.

B.A. Uralegaddi, C. Somanatha, Certain Classes of Univalent Functions, in Current Topics in Analytic Function Theory, 371-374, World Sci. Publishing, River Edge, New Jersey, London, Hong Kong, 1992, 371-




DOI: http://dx.doi.org/10.24193/subbmath.2024.4.02

Refbacks

  • There are currently no refbacks.