Some classes of Janowski functions associated with conic domain and a shell-like curve involving Ruscheweyh derivative
Abstract
Keywords
Full Text:
PDFReferences
Arif, M., et al., Coe cient inequalities for Janowski-Sakaguchi type functions associated
with conic regions, Hacet. J. Math. Stat., 47(2018), no. 2, 261-271.
Gandhi, S., Radius Estimates for Three Leaf Function and Convex Combination of Star-
like Functions, In: Deo N., Gupta, V., Acu, A., Agrawal, P. (eds.), Mathematical Analysis
I: Approximation Theory, ICRAPAM 2018, Springer Proceedings in Mathematics
& Statistics, 306(2020), Springer, Singapore.
Janowski, W., Some extremal problems for certain families of analytic functions, I, Ann.
Polon. Math., 28(1973), 297-326.
Kavitha, D., Dhanalakshmi, K., Subclasses of analytic functions with respect to symmet-
ric and conjugate points bounded by conical domain, Advances in Mathematics, Scienti c
Journal, 9(2020), no. 1, 397-404.
Khatter, K., Ravichandran, V., Sivaprasad Kumar, S., Starlike functions associated with
exponential function and the lemniscate of Bernoulli, Rev. R. Acad. Cienc. Exactas F s.
Nat. Ser. A Mat. RACSAM, 113(2019), no. 1, 233-253.
Ma, W.C., Minda, D., A uni ed treatment of some special classes of univalent functions,
in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf.
Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
Murugusundaramoorthy, G., Bulboac a, T., Hankel determinants for new subclasses of
analytic functions related to a shell shaped region, Mathematics, 8(2020), 1041.
Noor, K.I., Arif, M., Ul-Haq, W., On k-uniformly close-to-convex functions of complex
order, Appl. Math. Comput., 215(2009), no. 2, 629-635.
Noor, K.I., Malik, S.N., On coe cient inequalities of functions associated with conic
domains, Comput. Math. Appl., 62(2011), no. 5, 2209-2217.
Raina, R.K., Sok o l, J., On coe cient estimates for a certain class of starlike functions,
Hacet. J. Math. Stat., 44(2015), no. 6, 1427-1433.
Rogosinski, W., On the coe cients of subordinate functions, Proc. London Math. Soc.,
(1943), no. 2, 48-82.
Ruscheweyh, S.T., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
DOI: http://dx.doi.org/10.24193/subbmath.2023.4.05
Refbacks
- There are currently no refbacks.