Mathematical modelling of free convection in a square cavity filled with a bidisperse porous medium for large values of Rayleigh number
Abstract
A free convection problem for bidisperse porous media is considered. The numerical solutions are obtained using an algorithm based on an adaptive grid. Results for some values of the governing parameters when Rayleigh number is equal to 104 are provided
Keywords
Full Text:
PDFReferences
References
Baytas, A.C., Pop, I., Free convection in ooblique enclosures filled with a porous medium, Int. J. Heat Mass Transf., 42 (1999), 1047-1057.
Beckermann, C., Viskanta, R., Ramadhyani, S., A numerical study on nonDarcian natural convection in a vertical enclosure filled with a porous medium, Numer. heat Transfer, 10 (1986), 446-469.
Bejan, A., On the boundary layer regime in a vertical enclosure filled with a porous medium, Lett. Heat Mass Transf., 6 (1979), 93-102.
Bufnea, D., Niculescu, V., Silaghi, G, Sterca, A., Babe¸s-Bolyai University’s high performance computing center, Studia Univ. Babes-Bolyai Informatica 61 (2016) 54-69.
Cătinaș, T., Extension of some particular interpolation operators to a triangle with one curved side, Appl. Math. Comp., 315 (2017), 286-297.
Cătinaș, T., Extension of some generalized Hermite-type interpolation operators to the triangle with one curved side, Numer. Funct. Anal. Optim., 40 (2019), 1939-1963.
Chiorean, I., Cătinaș, T., Trîmbițaș, R., Numerical analysis, Cluj Univeristy Press, Cluj-Napoca, 2010.
Gentile, M., Straughan, B., Bidispersive thermal convection with relatively large macropores, J. Fluid Mech., 898 (2020), A14-1.
Gross, R., Bear, M.R., Hickox, C.E., The application of flux-corrected transport (FCT) to high Rayleigh number natural convection in a porous medium, In: Proceedings of the 7th International Heat Transfer Conference, San Francisco, CA (1986).
Ingham, D.B., Pop, I. (Eds.), Transport phenomena in porous media, vol. III, Elsevier, Oxford, 2005.
Manole, D.M., Lage, J.L., Numerical benchmark results for natural convection in a porous medium cavity, Heat Mass Transf. Porous Media ASME Conf., 105 (1992), 44-59.
Moya, S.L., Ramos, E., Sen, M., Numerical study of natural convection in a tilted rectangular porous material, Int. J. Heat Mass Transfer, 30 (1987), 630-645.
Nield, D.A., Bejan, A., Convection on porous media (fifth edition), Springer, New-York, 2017.
Nield, D.A., Kuznetsov, A.V., Heat transfer in bidisperse porous media, in: D.B. Ingham, I. Pop (Eds.), Transport in Porous Media, vol. III, Elsevier, Oxford, 2005, 34-59.
Nield, D.A., Kuznetsov, A.V., Natural convection about a vertical plate embedded in a bidisperse porous medium, Int. J. Heat Mass Transfer, 51 (2008), 1658-1664.
Micula, S., Pop, I., Numerical results for the classical free convection flow problem in a square porous cavity using spline functions, Int. J. Numer. Methods Heat Fluid Flow, 31, no. 3, 753-765
Rees, D.A.S., Nield, D.A., Kuznetsov, A.V., Vertial free convective boudarylayer flow in a bidisperse porous medium, ASME J. Heat Transfer, 130 (2008), 1-9.
Revnic, C., Groșan, T., Pop, I., Ingham, D.B., Free convection in a square cavity filled with a bidisperse porous medium, Int. J. Therm. Sci., 48 (2009), 1826-1833.
Revnic, C., Groșan, T., Pop, I., Ingham, D.B., Magnetic field effect on the unsteady free convection flow in a square cavity filled with a porous medium with a constant heat generation, Int. J. Heat Mass Transf., 54, no.9-10 (2011), 1734-1742.
Văcăraș, V., Major, Z.Z., Mure¸sanu, D.F., Krausz, T.L., Mărginean, I., Buzoianu, D.A., Effect of glatiramer acetate on peripheral blood brain-derived neurotrophic factor and phosphorylated trkB levels in relapsing- remitting multiple
sclerosis, CNS & Neurological Disorders-Drug Targets, 13 (2014), 647-651.
Strikwerda, J.C., Finite difference schemes and partial differential equations (second edition), SIAM, Philadelphia, 2004.
Straughan, B., Convection with local thermal non-equilibrium and microfluidic effects, Springer, Heidelberg, 2015.
Walker, K.L., Homsy, G.M., Convection in a porous cavity, J. Fluid Mech., 76 (1978), 338-363.
DOI: http://dx.doi.org/10.24193/subbmath.2022.4.16
Refbacks
- There are currently no refbacks.