On a generalization of the Wirtinger inequality and some its applications
Abstract
In this paper, we present generalized versions of the Wirtinger inequality, which contains as particular cases many of the well-known versions of this classic isoperimetric inequality. Some applications and open problems are also presented in the work.
Keywords
Full Text:
PDFReferences
S. Asliyuce, Wirtinger type inequalities via fractional integral operators,
Stud. Univ. Babes-Bolyai Math. 64(2019), No. 1, 35-42. DOI:
24193/subbmath.2019.1.04
A. Atangana, Derivative with a New Parameter Theory, Methods and Applications, Academic Press, 2016.
Rameez Aziz, Yaghvendra Kumawat, Marichev-Saigo-Maeda Fractional Operators with extended Mittag-Leffler function and generalized Galue type Struve function, Advanced Mathematical Models & Applications Vol.4, No.3, 2019, pp.210-223
Baleanu, D., COMMENTS ON: Ortigueira M., Martynyuk V., Fedula M.,
Machado J.A.T., The failure of certain fractional calculus operators in two
physical models, in Fract. Calc. Appl. Anal. 22(2)(2019), Fract. Calc. Appl. Anal., Volume 23: Issue 1, DOI: https://doi.org/10.1515/fca-2020-0012.
D. Baleanu, and A. Fernandez, On Fractional Operators and Their Classifications, Mathematics 2019, 7, 830; doi:10.3390/math7090830
P. R. Beesack, Integral inequalities of the Wirtinger type, Duke Math. J., 25 (1958), pp. 477-498.
I. Cinar, On Some Properties of Generalized Riesz Potentials, Intern. Math. Journal, Vol. 3,2003, no. 12, 1393-1397
E. Capelas de Oliveira, J. A. Tenreiro Machado, A Review of Definitions for Fractional Derivatives and Integral, Mathematical Problems in Engineering Volume 2014, Article ID 238459, 6 pages
http://dx.doi.org/10.1155/2014/238459
J. B. Diaz, F. T. Metcalf, Variations of Wirtinger's inequality, Inequalities, Academic Press, New York, 1967, pp. 79-103.
F. Ertugral, M. Z. Sarikaya, Some trapezoid type inequalities for generalized fractional integral, 2018, preprint.
A. Fleitas, J. A. Méndez, J. E. Nápoles, J. M. Sigarreta, On the some
classical systems of Liénard in general context, Revista Mexicana de Física, 65 (6) 618-625 NOVEMBER-DECEMBER 2019.
A. Fleitas, J. E. Nápoles Valdes, J. M. Rodríguez, J M. Sigarreta, On some fractional differential equations. Submitted.
P. M. Guzmán, G. Langton, L. M. Lugo, J. Medina and J. E. Nápoles
Valdes, A new denition of a fractional derivative of local type, J. Math.
Anal. 9:2 (2018), 88-98.
P. M. Guzman, Luciano M. Lugo Motta Bittencurt, Juan E. Nápoles
Valdes, A Note on Stability of Certain Lienard Fractional Equation, International Journal of Mathematics and Computer Science, 14(2019), no. 2, 301-315
P. M. Guzman, L. M. Lugo, J. E. Nápoles,M. Vivas-Cortez, On a New
Generalized Integral Operator and Certain Operating Properties, Axioms
, 9, 69; doi:10.3390/axioms9020069
R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, pp. 223-276. Springer, Wien (1997).
G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, 2nd ed., Cambridge University Press, London and New York, 1959.
L. L. Helms, Introduction To Potential Theory (New York: Wiley-
Interscience, 1969).
Hinton, D.B., Lewis, R.T., Discrete spectra criteria for singular differential operators with middle terms, Math. Proc. Cambridge Philos. Soc., 77(1975), 337-347.
U.N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011), 860-865.
U.N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. App. 6 (2014), 1-15.
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of
fractional derivative. J. Comput. Appl. Math., 264, 65-70 (2014)
M. Ma, D. Baleanu, Y. S. Gasimov, X.-J. Yang, New results for multidimensional diffusion equations in fractal dimensional space. Romanian Journal of Physics, Vol.61, No.5-6, 2016, pp.784-794.
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional
calculus. Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140-1153.
F. Martínez, P. O. Mohammed, J. E. Nápoles V., Non Conformable Fractional Laplace Transform, Kragujevac Journal of Mathematics Volume
(3) (2022), Pages 341-354.
F. Martínez, J. E. Nápoles V., Towards a Non-Conformable Fractional Calculus of N-variables. Journal of Mathematics and Applications, to appear.
C. Martinez, M. Sanz, F. Periogo, Distributional Fractional Powers of
Laplacian, Riesz Potential. Studia Mathematica 135 (3) 1999
D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives. Dordrecht, 1991.
J. E. Nápoles Valdes, P. M. Guzmán, L. M. Lugo, Some New Results on Nonconformable Fractional Calculus, Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 13, Number 2, pp. 167-175 (2018)
J. E. Nápoles, P. M. Guzmán, L. M. Lugo, A. Kashuri, The local non
conformable derivative and Mittag Leffler function, Sigma J Eng & Nat Sci
(2), 2020, 1007-1017.
J. E. Nápoles Valdes, J. M. Rodríguez, J. M. Sigarreta, On Hermite-
Hadamard type inequalities for non-conformable integral operators, Symmetry 2019, 11, 1108; doi:10.3390/sym11091108.
J. C. Reis, P. N. Da Silva, J. L. Boldrini, Uma desigualdade do tipo
Wirtinger, Cadernos do IME - Serie Matemática Vol. 8 (2014)
M. Z. Sarikaya, On the New Wirtinger Type Inequalities, Konuralp Journal of Mathematics, 7 (1) (2019) 112-116.
M. Z. Sarikaya, C. C. Bilisik, Wirtinger type inequalities for conformable fractional integrals, preprint.
M. Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, 2017, submitted.
M.Z. Sarikaya, H. Yildirim, On generalization of the Riesz potential, Indian Jour. of Math. and Mathematical Sci., 3(2), 231-235, 2007.
C. A. Swanson, Wirtinger's Inequality, SIAM J. MATH. ANAL. Vol. 9, No. 3, June 1978, 484-491.
S. Umarov, S. Steinberg, Variable order differential equations with piecewise constant order-function and diffusion with changing modes, Z. Anal. Anwend. 28 (4) (2009) 431-450.
X.-J. Yang, Y. S. Gasimov, F. Gao, N. A. Allahverdiyeva, Travelling-wave solutions for Klein-Gordon and Helmholtz equations on Cantor sets. Proceedings of the Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Vol.43, No.1, 2017, pp.123-131.
DOI: http://dx.doi.org/10.24193/subbmath.2023.2.01
Refbacks
- There are currently no refbacks.