Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function

Mohamed I. Abbas

Abstract


This paper concerns the existence and uniqueness of solutions of non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function.By the aid of the nonlinear alternative of Leray-Schauder type and the Banach contraction mapping principle, the main results are demonstrated. Two examples are inserted to illustrate the applicabilityof the theoretical results.


Keywords


Non-instantaneous impulses; Proportional fractional derivatives; Leray-Schauder alternative

Full Text:

PDF

References


Abbas, M.I., emph{On the initial value problems for the Caputo-Fabrizio impulsive fractional differential equations}, Asian-Eur. J. Math., (2021), 2150073, DOI: 10.1142/S179355712150073X.

Abbas, M.I., emph{Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions}, J. Contemp. Math. Anal., textbf{50}(5)(2015), 209-219.

Agarwal, R., Hristova, S., O'Regan, D., emph{Iterative techniques for the initial value problem for Caputo fractional differential equations with non-instantaneous impulses}, Appl. Math. Comput., textbf{334}(2018), 407-421.

Anderson, D.R., Ulness, D.J., emph{Newly defined conformable derivatives}, Adv. Dyn. Syst. Appl., {bf10}(2)(2015), 109-137.

Dugundji, J., Granas, A., emph{Fixed Point Theory}, Warsaw, 1982.

Hern'{a}ndaz, E., O'Regan, D., emph{On a new class of abstract impulsive differential equation},

Proc. Amer. Math. Soc., textbf{141}(2013), 1641-1649.

Jarad, F., Abdeljawad, T., Rashid, S., Hammouch, Z.,

emph{More properties of the proportional fractional integrals and derivatives of a

function with respect to another function},

Adv. Differential Equations, (2020), 2020:303.

Jarad, F., Alqudah, M.A., Abdeljawad, T.,

emph{On more general forms of proportional fractional operators},

Open Math., textbf{18}(2020), 167-176.

Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.,

emph{A new definition of fractional derivative},

J. Comput. Appl. Math., {bf264}(2014), 65-70.

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.,

emph{Theory and Applications of Fractional Differential Equations},

Elsevier B. V., Amsterdam, 2006.

Kumar, A., Chauhan, H.V., Ravichandran, C., Nisar, K.S., Baleanu, D.,

emph{Existence of solutions of non-autonomous fractional differential equations with

integral impulse condition},

Adv. Differential Equations, (2020), 2020:434.

Kumar, A., Pandey, D.N.,

emph{Existence of mild solution of Atangana-Baleanu fractional differential equations

with non-instantaneous impulses and with non-local conditions},

Chaos Solitons Fractals, textbf{132}(2020), 109551.

Liu, K., Wang, J., O'Regan, D., Fev{c}kan, M.,

emph{A new class of $(omega, c)$-periodic non-instantaneous impulsive differential equations},

Mediterr. J. Math., (2020), textbf{17}:155.

Luo, D., Luo, Z.,

emph{Existence of solutions for fractional differential inclusions with initial value

condition and non-instantaneous impulses},

Filomat, textbf{33}(17)2019), 5499-5510.

Myshkis, A.D., Samoilenko, A.M.,

emph{Systems with impulsive at fixed moments of time},

Mat. Sb., textbf{74}(1967), 202-208.

Ngo, V.H., O'Regan, D.,

emph{A remark on $psi$-Hilfer fractional differential equations with non-instantaneous impulses},

Math. Methods Appl. Sci., (2020), 1-15.

Podlubny, I.,

emph{Fractional Differential Equations},

Academic Press, San Diego, 1999.

Samko, S., Kilbas, A., Marichev, O.,

emph{Fractional Integrals and Derivatives},

Gordon and Breach Science Publishers, Longhorne, PA, 1993.

Srivastava, H.M., Saad, K.M.,

emph{Some new models of the time-fractional gas dynamics equation},

Adv. Math. Models Appl., {bf 3}(1)(2018), 5-17.

Zada, A., Ali, N., Riaz, U.,

emph{Ulam's stability of multi-point implicit boundary value problems with non-instantaneous impulses},

Boll. Unione Mat. Ital., textbf{13}(2020), 305-328.

Zhao, Y., Luo, C., Chen, H.,

emph{Existence results for non-instantaneous impulsive nonlinear fractional differential

equation via variational methods},

Bull. Malays. Math. Sci. Soc., textbf{43}(2020), 2151-2169.




DOI: http://dx.doi.org/10.24193/subbmath.2023.3.07

Refbacks

  • There are currently no refbacks.