Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function
DOI:
https://doi.org/10.24193/subbmath.2023.3.07Keywords:
Non-instantaneous impulses, Proportional fractional derivatives, Leray-Schauder alternativeAbstract
This paper concerns the existence and uniqueness of solutions of non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function.By the aid of the nonlinear alternative of Leray-Schauder type and the Banach contraction mapping principle, the main results are demonstrated. Two examples are inserted to illustrate the applicabilityof the theoretical results.
References
Abbas, M.I., emph{On the initial value problems for the Caputo-Fabrizio impulsive fractional differential equations}, Asian-Eur. J. Math., (2021), 2150073, DOI: 10.1142/S179355712150073X.
Abbas, M.I., emph{Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions}, J. Contemp. Math. Anal., textbf{50}(5)(2015), 209-219.
Agarwal, R., Hristova, S., O'Regan, D., emph{Iterative techniques for the initial value problem for Caputo fractional differential equations with non-instantaneous impulses}, Appl. Math. Comput., textbf{334}(2018), 407-421.
Anderson, D.R., Ulness, D.J., emph{Newly defined conformable derivatives}, Adv. Dyn. Syst. Appl., {bf10}(2)(2015), 109-137.
Dugundji, J., Granas, A., emph{Fixed Point Theory}, Warsaw, 1982.
Hern'{a}ndaz, E., O'Regan, D., emph{On a new class of abstract impulsive differential equation},
Proc. Amer. Math. Soc., textbf{141}(2013), 1641-1649.
Jarad, F., Abdeljawad, T., Rashid, S., Hammouch, Z.,
emph{More properties of the proportional fractional integrals and derivatives of a
function with respect to another function},
Adv. Differential Equations, (2020), 2020:303.
Jarad, F., Alqudah, M.A., Abdeljawad, T.,
emph{On more general forms of proportional fractional operators},
Open Math., textbf{18}(2020), 167-176.
Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.,
emph{A new definition of fractional derivative},
J. Comput. Appl. Math., {bf264}(2014), 65-70.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.,
emph{Theory and Applications of Fractional Differential Equations},
Elsevier B. V., Amsterdam, 2006.
Kumar, A., Chauhan, H.V., Ravichandran, C., Nisar, K.S., Baleanu, D.,
emph{Existence of solutions of non-autonomous fractional differential equations with
integral impulse condition},
Adv. Differential Equations, (2020), 2020:434.
Kumar, A., Pandey, D.N.,
emph{Existence of mild solution of Atangana-Baleanu fractional differential equations
with non-instantaneous impulses and with non-local conditions},
Chaos Solitons Fractals, textbf{132}(2020), 109551.
Liu, K., Wang, J., O'Regan, D., Fev{c}kan, M.,
emph{A new class of $(omega, c)$-periodic non-instantaneous impulsive differential equations},
Mediterr. J. Math., (2020), textbf{17}:155.
Luo, D., Luo, Z.,
emph{Existence of solutions for fractional differential inclusions with initial value
condition and non-instantaneous impulses},
Filomat, textbf{33}(17)2019), 5499-5510.
Myshkis, A.D., Samoilenko, A.M.,
emph{Systems with impulsive at fixed moments of time},
Mat. Sb., textbf{74}(1967), 202-208.
Ngo, V.H., O'Regan, D.,
emph{A remark on $psi$-Hilfer fractional differential equations with non-instantaneous impulses},
Math. Methods Appl. Sci., (2020), 1-15.
Podlubny, I.,
emph{Fractional Differential Equations},
Academic Press, San Diego, 1999.
Samko, S., Kilbas, A., Marichev, O.,
emph{Fractional Integrals and Derivatives},
Gordon and Breach Science Publishers, Longhorne, PA, 1993.
Srivastava, H.M., Saad, K.M.,
emph{Some new models of the time-fractional gas dynamics equation},
Adv. Math. Models Appl., {bf 3}(1)(2018), 5-17.
Zada, A., Ali, N., Riaz, U.,
emph{Ulam's stability of multi-point implicit boundary value problems with non-instantaneous impulses},
Boll. Unione Mat. Ital., textbf{13}(2020), 305-328.
Zhao, Y., Luo, C., Chen, H.,
emph{Existence results for non-instantaneous impulsive nonlinear fractional differential
equation via variational methods},
Bull. Malays. Math. Sci. Soc., textbf{43}(2020), 2151-2169.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.