Fredholm and Volterra nonlinear possibilistic integral equations
Abstract
Keywords
Full Text:
PDFReferences
Bede, B., Coroianu, L., Gal, S.G., Approximation by Max-Product Type Operators, Springer, New York, 2016.
De Cooman, G., Possibility theory. I. The measure-and integral-theoretic groundwork, Internat. J. Gen. Systems, 25 (1997), no. 4, 291-323.
Coroianu, L., Gal, S.G., Opris, B., Trifa, S., Feller' s scheme in approxima-
tion by nonlinear possibilistic integral operators, Numer. Funct. Anal.
Optim, 38 (2017), 327-343.
Dubois D., Prade, H., Possibility Theory, Plenum Press, New York, 1988.
Gal, S.G., Fredholm-Choquet integral equations, J. Integral Equations Appl., 31 (2019), no. 2, 183-194.
Gal, S.G., Volterra-Choquet integral equations, Integral Equations Appl.,
(2019), no. 4, 495-504.
Gal, S.G., A possibilistic approach of the max-product Bernstein kind
operators, Results Math., 65 (2014), 453-462.
Gal, S.G., On the laws of large numbers in possibility theory, Ann. Acad. Rom. Sci. Ser. Math. Appl., 11 (2019), no. 2, 274-284.
Gal, S.G., Approximation by polynomial possibilistic integral operators, Ann. Acad. Rom. Sci. Ser. Math. Appl., 12 (2020), no. 1, to appear.
DOI: http://dx.doi.org/10.24193/subbmath.2021.1.09
Refbacks
- There are currently no refbacks.