The domain of location of a limit cycle of the Li\'{e}nard system
DOI:
https://doi.org/10.24193/subbmath.2021.1.04Keywords:
Li\'{e}nard system, location of a limit cycleAbstract
The Li\'{e}nard system $\frac{dx}{dt}=y,\quad \frac{dy}{dt}=-f(x)y-g(x)$ is considered.Under some assumptions on functions $f(x)$ and $g(x)$, we estimate the domain of location of the unique stable limit cycle of the Li\'{e}nard system.
This estimation has the form $\alpha_2<x<\alpha_1$, where $\alpha_1$ and $\alpha_2$ are respectively the positive the negative roots of the equation $\int_0^{\alpha}\left[\int_0^xf(s)ds\right] g(x)dx=0$.
References
bibitem{Bo:78} T.T.Bowman, T. T., emph{Periodic solutions of Lienard systems with symmetries}, Nonlinear Analysis, textbf{2}(1978), no. 4, 457 -- 464.
bibitem{CaVi:05} Carletti, T., Villari, G., emph{A note on existence and uniqueness of limit cycles for Li'{e}nard systems}, Journal of Mathematical Analysis and Applications, textbf{307}(2005), no. 2, 763--773.
bibitem{IgKi:13} Ignat'ev, A.O., Kirichenko, V.V., emph{On necessary conditions for global asymptotic stability of equilibrium for the Li'{e}nard equation}, Mathematical Notes, textbf{93}(2013), no. 1-2, 75-82.
bibitem{Kr:63} Krasovskii, N.N., emph{Stability of motion. Applications of Lyapunov's second method to differential systems and equations with delay}, Stanford University Press, 1963.
bibitem{LeSm:42} Levinson, N., Smith, O., emph{A general equation for relaxation oscillations}, Duke Mathematical Journal, textbf{9}(1942), no. 2, 382-403.
bibitem{Lie:28a} Li'{e}nard, A., emph{'{E}tude des oscillations entret'{e}nues}, Revue g'{e}n'{e}rale de l''{e}lectricit'{e}, textbf{23}(1928), 901--912.
bibitem{Lie:28b} Li'{e}nard, A., emph{'{E}tude des oscillations entret'{e}nues}, Revue g'{e}n'{e}rale de l''{e}lectricit'{e}, textbf{23}(1928), 946--954.
bibitem{Ll:87} Lloyd, W.G., emph{Li'{e}nard systems with several limit cycles}, Math. Proc. Cambridge Philos. Soc., textbf{102}(1987), 565-572.
bibitem{NeSa:78} Neumann, D.A., Sabbagh, L., emph{Periodic solutions of Lienard systems}, Journal of Mathematical Analysis and Applications, textbf{62}(1978), no. 1, 148-156.
bibitem{Od:95} Odani, K., emph{The limit cycle of the van der Pol equation is not algebraic}, J. Differential Equations, textbf{115}(1995), no. 1, 146-152.
bibitem{Sa:99} Sabatini, M., emph{On the Period Function of Lienard Systems}, Journal of Differential Equation, textbf{152}(1999), 467-487.
bibitem{SaVi:10} Sabatini, M., Villari, G., emph{On the uniqueness of limit cycles for Lienard equation: the legacy of G. Sansone}, Matematiche (Catania), textbf{65}(2010), no. 2, 201-214.
bibitem{Sa:49} Sansone, G., emph{Sopra l'equazione di A. Li'{e}nard delle oscillazioni di rilassamento}, Annali di Matematica Pura ed Applicata (4), textbf{28}(1949), 153-181.
bibitem{vanderPol:27} Van der Pol, B., emph{On relaxation-oscillations}, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, textbf{2}(1927), 978-992.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.