The domain of location of a limit cycle of the Li\'{e}nard system
Abstract
Under some assumptions on functions $f(x)$ and $g(x)$, we estimate the domain of location of the unique stable limit cycle of the Li\'{e}nard system.
This estimation has the form $\alpha_2<x<\alpha_1$, where $\alpha_1$ and $\alpha_2$ are respectively the positive the negative roots of the equation $\int_0^{\alpha}\left[\int_0^xf(s)ds\right] g(x)dx=0$.
Keywords
Full Text:
PDFReferences
bibitem{Bo:78} T.T.Bowman, T. T., emph{Periodic solutions of Lienard systems with symmetries}, Nonlinear Analysis, textbf{2}(1978), no. 4, 457 -- 464.
bibitem{CaVi:05} Carletti, T., Villari, G., emph{A note on existence and uniqueness of limit cycles for Li'{e}nard systems}, Journal of Mathematical Analysis and Applications, textbf{307}(2005), no. 2, 763--773.
bibitem{IgKi:13} Ignat'ev, A.O., Kirichenko, V.V., emph{On necessary conditions for global asymptotic stability of equilibrium for the Li'{e}nard equation}, Mathematical Notes, textbf{93}(2013), no. 1-2, 75-82.
bibitem{Kr:63} Krasovskii, N.N., emph{Stability of motion. Applications of Lyapunov's second method to differential systems and equations with delay}, Stanford University Press, 1963.
bibitem{LeSm:42} Levinson, N., Smith, O., emph{A general equation for relaxation oscillations}, Duke Mathematical Journal, textbf{9}(1942), no. 2, 382-403.
bibitem{Lie:28a} Li'{e}nard, A., emph{'{E}tude des oscillations entret'{e}nues}, Revue g'{e}n'{e}rale de l''{e}lectricit'{e}, textbf{23}(1928), 901--912.
bibitem{Lie:28b} Li'{e}nard, A., emph{'{E}tude des oscillations entret'{e}nues}, Revue g'{e}n'{e}rale de l''{e}lectricit'{e}, textbf{23}(1928), 946--954.
bibitem{Ll:87} Lloyd, W.G., emph{Li'{e}nard systems with several limit cycles}, Math. Proc. Cambridge Philos. Soc., textbf{102}(1987), 565-572.
bibitem{NeSa:78} Neumann, D.A., Sabbagh, L., emph{Periodic solutions of Lienard systems}, Journal of Mathematical Analysis and Applications, textbf{62}(1978), no. 1, 148-156.
bibitem{Od:95} Odani, K., emph{The limit cycle of the van der Pol equation is not algebraic}, J. Differential Equations, textbf{115}(1995), no. 1, 146-152.
bibitem{Sa:99} Sabatini, M., emph{On the Period Function of Lienard Systems}, Journal of Differential Equation, textbf{152}(1999), 467-487.
bibitem{SaVi:10} Sabatini, M., Villari, G., emph{On the uniqueness of limit cycles for Lienard equation: the legacy of G. Sansone}, Matematiche (Catania), textbf{65}(2010), no. 2, 201-214.
bibitem{Sa:49} Sansone, G., emph{Sopra l'equazione di A. Li'{e}nard delle oscillazioni di rilassamento}, Annali di Matematica Pura ed Applicata (4), textbf{28}(1949), 153-181.
bibitem{vanderPol:27} Van der Pol, B., emph{On relaxation-oscillations}, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, textbf{2}(1927), 978-992.
DOI: http://dx.doi.org/10.24193/subbmath.2021.1.04
Refbacks
- There are currently no refbacks.