A nonlocal Cauchy problem for nonlinear generalized fractional integro-differential equations
Abstract
Keywords
Full Text:
PDFReferences
Abbas, S., Benchohra, M., N'Gu'er'ekata, G. M.: Topics in Fractional Differential Equations. Springer-Verlag, New York, 2012.
Abbas, S., Benchohra, M., N'Gu'er'ekata, G. M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015.
Agarwal, R. P., Benchohra, M., Hamani, S.: A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions. Acta Appl. Math. 109 (2010), 973--1033.
Anastassiou, G. A.: Advances on Fractional Inequalities. Springer, New York, 2011.
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York, 2012.
Baleanu, D., G"{u}venc{c}, Z., Machado, J.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York, 2000 .
Benchohra, M., Hamani, S., Ntouyas, S. K.: Boundary Value Problems for Differential Equations with Fractional Order and Nonlocal Conditions. Nonlinear Anal. 71(7-8) (2009), 2391--2396.
Bhairat, S. P., Dhaigude, D. B.: Existence of solutions of generalized fractional differential equation with nonlocal initial condition. Math. Bohem. 144(2) (2019), 203--220.
Bhairat, S. P. : Existence and stability of fractional differential equations involving generalized Katugampola derivative. Stud. Univ. Babec{s}-Bolyai Math. 65(1) (2020), 29--46
Katugampola, U. N.: New Approach to a Generalized Fractional Integral. Appl. Math. Comput. 218 (2011), 860--865.
Katugampola, U. N.: New Approach to Generalized Fractional Derivatives. Bull. Math. Anal. Appl. 6 (2014), 1--15.
Kendre, S. D., Jagtap, T. B., Kharat, V. V.: On Nonlinear Fractional Integro--differential Equations with Non Local Condition in Banach Spaces. Nonlinear Anal. Differential Equations. 1 (2013), 129--141.
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics studies, vol. 204. Elsevier Science B. V., Amsterdam, 2006.
Oliveira, D. S., Capelas de Oliveira, E.: Hilfer--Katugampola fractional derivative. Comp. Appl. Math. 37 (2018), 3672--3690. https://doi.org/10.1007/s40314-017-0536-8.
Ortigueira, M. D.: Fractional Calculus for Scientists and Engineers. Springer, Berlin, 2011.
Podlubny, I.: Fractional Differential Equations. Academic Press, New York, 1999.
Tarasov, V. E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg; Higher Education Press, Beijing, 2010.
Tate, S., Dinde, H. T.: Some Theorems on Cauchy Problem for Nonlinear Fractional Differential Equations with Positive Constant Coefficient. Mediterr. J. Math. 14 (2017), 72. https://doi.org/10.1007/s00009-017-0886-x
Tate, S., Dinde, H. T.: Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Non Local Conditions. Palest. J. Math. 9(1) (2020), 212--219.
Tate, S., Dinde, H. T.: Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations. Journal of Nonlinear Analysis and Application. 2019(2) (2019), 29--40.
Tate, S., Kharat, V. V., Dinde, H. T.: On Nonlinear Mixed Fractional Integro--Differential Equations with Positive Constant Coefficient. Filomat. 33(17) (2019), 5623--5638.
Tate, S., Kharat, V. V., Dinde, H. T.: On Nonlinear Fractional Integro--Differential Equations with Positive Constant Coefficient. Mediterr. J. Math. 16(2) (2019), p. 41. https://doi.org/10.1007/s00009-019-1325-y
Tate, S., Kharat, V. V., Dinde, H. T.: A Nonlocal Cauchy Problem for Nonlinear Fractional Integro--Differential Equations with Positive Constant Coefficient. J. Math. Model. 7(1) (2019), 133--151.
DOI: http://dx.doi.org/10.24193/subbmath.2023.3.03
Refbacks
- There are currently no refbacks.