New integral inequalities involving generalized Riemann-Liouville fractional operators
DOI:
https://doi.org/10.24193/subbmath.2023.3.02Keywords:
Generalized fractional Riemann-Liouville integral, fractional integral inequality, synchronous functionsAbstract
In this paper, using a generalized operator of the Riemann-Liouville type, defined and studied in a previous work, several integral inequalities for synchronous functions are established.
References
P. L. Chebyshev, Sur les expressions approximatives des integrales dnies par les autres prises entre les memes limite, Proc. Math. Soc. Kharkov. 2(1882):93-98.
Z. Dahmani, New Inequalities in Fractional Integrals, International Journal of Nonlinear Science, 9(2010), 493-497.
R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15(2), 179-192 (2007).
Juan D. Galeano, Juan E. Nápoles, Edgardo Pérez, On a general formulation of the fractional operator Riemann-Liouville and related inequalities, submitted.
P. O. Mohammed, Inequalities of (k;s), (k;h)-type for Riemann-Liouville Fractional Integrals, Applied Mathematics E-Notes, 17(2017), 199-206
S. Mubeen, G. M. Habibullah, k-fractional integrals and applications. Int. J. Contemp. Math. Sci. 7, 89-94 (2012).
S. Mubeen, G. M. Habibullah, M. N. Naeem, The Minkowski inequality involving generalized k-fractional conformable integral, J. Inequal. Appl. 2019, 81 (2019). https://doi.org/10.1186/s13660-019-2040-8.
F. Qi, B. N. Guo, Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 111(2), 425-434 (2017). https://doi.org/10.1007/s13398-016-0302-6.
F. Qi, S. Habib, S. Mubeen, M. N. Naeem, Generalized k-fractional conformable integrals and related inequalities, AIMS Mathematics, 4(3): 343-358 DOI:10.3934/math.2019.3.343.
E. D. Rainville, Special Functions. Macmillan Co., New York (1960).
S. Rashid, Z. Hammouch, H. Kalsoom, R. Ashraf, Y. M. Chu, New Investigation on the Generalized k-Fractional Integral Operators, Frontiers in Physics February 2020 | Volume 8 | Article 25 doi: 10.3389/fphy.2020.00025.
M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, (k,s)-Riemann-Liouville fractional integral and applications, Hacettepe Journal of Mathematics and Statistics Volume 45 (1) (2016), 77-89.
Z. H. Yang, J. F. Tian, Monotonicity and inequalities for the gamma function. J. Inequal. Appl. 2017, 317 (2017). https://doi.org/10.1186/s13660-017-1591-9.
Z. H. Yang, J. F. Tian, Monotonicity and sharp inequalities related to gamma function. J. Math. Inequal. 12(1), 1-22 (2018). https://doi.org/10.7153/jmi-2018-12-01.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.