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Strongly quasilinear parabolic systems

Farah Balaadich and Elhoussine Azroul

Abstract. Using the theory of Young measures, we prove the existence of solutions
to a strongly quasilinear parabolic system

∂u

∂t
+A(u) = f,

where A(u) = −divσ(x, t, u,Du) + σ0(x, t, u,Du), σ(x, t, u,Du) and

σ0(x, t, u,Du) are satisfy some conditions and f ∈ Lp′(0, T ;W−1,p′(Ω;Rm)).
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1. Introduction

Let n ≥ 2 be an integer and Ω be a bounded open subset of Rn. Let Q be
Ω × (0, T ) where T > 0 is given. In this work we are concerned with the problem of
existence of a weak solution for a class of quasilinear parabolic systems of the form

∂u

∂t
+A(u) = f in Ω× (0, T ), (1.1)

u(x, t) = 0 on ∂Ω× (0, T ), (1.2)

u(x, 0) = u0(x) in Ω; (1.3)

where f ∈ Lp′(0, T ;W−1,p′(Ω;Rm)), u0(x) is a given function in L2(Ω;Rm) and A(u) :

Lp(0, T ;W 1,p
0 (Ω;Rm)) → Lp

′
(0, T ;W−1,p′(Ω;Rm)) is a Leray-Lions operator of the

form A(u) = −divσ(x, t, u,Du) + σ0(x, t, u,Du).
The solvability of (1.1)-(1.3) has been discussed in various papers for m = 1 and

m > 1. Brezis and Browder [11] proved the existence and uniqueness of a solution
of (1.1)-(1.3) when σ0 is independent of ∇u. Landes and Mustonen [24, 25] provided
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


342 Farah Balaadich and Elhoussine Azroul

structure conditions on a strongly nonlinear operator A(u), under which (1.1) has
weak solutions.

S. Demoulini [13] studied the nonlinear parabolic evolution of forward-backward
type ut = ∇.q(∇u) on Q∞ ≡ Ω × R+. The author used the concept of Young mea-
sures as solutions to this kind of problems. Hungerbühler [22] considered the problem
(1.1) with σ0 ≡ 0 and proved the existence of a weak solution under classical regu-
larity, growth, and coercivity conditions for σ, but with only very mild monotonicity
assumptions for some p ∈ (2n/(n + 2),∞). See [6, 7, 15, 17] for the utilization of
Young’s measure theory in elliptic case with dual or measure-valued right hand side,
and [4, 16] for some kind of p-Laplacian systems.

Misawa [27] studied partial regularity results for evolutional p-Laplacian systems

∂tu
i −

m∑
α,β=1

Dα

(
|Du|p−2

g gαβ(z, u)Dβu
i
)

= f i(z, u,Du), i = 1, ..., n,

with natural growth on the gradient. Dreyfuss and Hungerbühler [18] investigated a
class of Navier-Stokes systems

∂tu− divσ(x, t, u,Du) + u.∇u = f − gradP

and obtained an existence result for a weak solution by the same theory as in [22].
Furthermore, the authors discussed the general case of the external force f .

In the setting of weighted Sobolev spaces, Aharouch et al. [2] studied the exis-
tence of weak solutions for (1.1) via pseudo-monotonicity, when m = 1. Di Nardo et
al. [14] proved the existence of a renormalized solution for

ut − div a(x, t, u,∇u) + divK(x, t, u) +H(x, t,∇u) = f − div g,

where the data belongs to L1(Q) +Lp
′
(0, T ;W−1,p′(Ω)). For more results, the reader

can see [10, 9, 12, 19].

In [5], we have investigated the problem (1.1)-(1.3) and prove the existence of

weak solutions for every f ∈ Lp′(0, T ;W−1,p′(Ω;Rm)), by using the theory of Young
measures and weak monotonicity assumptions. Furthermore, we have considered the
following coercivity condition

σ(x, t, s, ξ) : ξ + σ0(x, t, s, ξ).s ≥ β|ξ|p − d2(x, t),

with β > 0 and d2 ∈ L1(Q). The purpose of this paper, is to prove the existence of
weak solutions for (1.1) by considering the coercivity condition only over σ, and the
nonlinear term σ0(x, t, u,Du) satisfy

|σ0(x, t, s, ξ)| ≤ b(|s|)
(
d2(x, t) + |ξ|p

)
,

σ0(x, t, s, ξ).s ≥ 0,

with d2 ∈ L1(Q) and b : R+ → R+ is a continuous and increasing function. It should
be noted here, in the above first condition, that there is no growth restriction on the
perturbation σ0 as a function of the unknown. This makes the resolution of (1.1) more
complicate.
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This paper is organized as follows: in Section 2 we recall the definition of Young
measure and some its properties. Section 3 contains basic assumptions and the main
result, while Section 4 is devoted to the proof of the main result.

2. Necessary facts about Young measures

In [20] it is claimed that weak convergence is a basic tool of nonlinear analysis,
because it has the same compactness properties as the convergence in finite dimen-
sional spaces. Moreover, this convergence sometimes does not behave as one desire
with respect to nonlinear functionals and operators. In this situation one can use the
technics of Young measures.

Consider

C0(Rm) =
{
ϕ ∈ C(Rm) : lim

|λ|→∞
ϕ(λ) = 0}.

Its dual is the well known signed Radon measures M(Rm) with finite mass. The
duality of

(
M(Rm), C0(Rm)

)
is given by the following integrand

〈ν, ϕ〉 =

∫
Rm

ϕ(λ)dν(λ), where ν : Ω→M(Rm).

Lemma 2.1 ([20]). Let (zk)k be a bounded sequence in L∞(Ω;Rm). Then there exist
a subsequence (still denoted (zk)) and a Borel probability measure νx on Rm for a.e.
x ∈ Ω, such that for almost each ϕ ∈ C(Rm) we have

ϕ(zk) ⇀∗ ϕ(x) = 〈νx, ϕ〉 weakly in L∞(Ω;Rm)

for a.e. x ∈ Ω.

Definition 2.2. The family ν = {νx}x∈Ω is called Young measures associated with
(generated by) the subsequence (zk)k.

In [8], it is shown that if for all R > 0

lim sup
L→∞

∣∣{x ∈ Ω ∩BR(0) : |zk(x)| ≥ L}
∣∣ = 0,

then for any measurable Ω′ ⊂ Ω, we have

ϕ(x, zk) ⇀ 〈νx, ϕ(x, .)〉 =

∫
Rm

ϕ(x, λ)dνx(λ) in L1(Ω′),

for every Carathéodory function ϕ : Ω× Rm → R such that (ϕ(x, zk(x)))k is equiin-
tegrable.

The following lemmas are useful for us.

Lemma 2.3 ([21]). (i) If |Ω| < ∞ and νx is the Young measure generated by the
(whole) sequence (zk), then there holds

zk −→ z in measure ⇔ νx = δz(x) for a.e. x ∈ Ω.

(ii) If the sequence (vk) generates the Young measure δv(x), then (zk, vk) generates
the Young measure νx ⊗ δv(x).
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It should be noted that the above properties remain true when zk = Dwk, with
wk : Ω→ Rm and Ω can be repalced by the cylinder Q. We denote by Mm×n the set
of m× n matrices equipped with the inner product ξ : η =

∑
i,j ξijηij .

Lemma 2.4 ([23]). Let ϕ : Q×Rm×Mm×n → R be a Carathéodory function and (wk)
be a sequence of measurable functions, where wk : Q → Rm, such that wk → w in
measure and such that Dwk generates the Young measure ν(x,t). Then

lim inf
k→∞

∫
Q

ϕ(x, t, wk, Dwk)dxdt ≥
∫
Q

∫
Mm×n

ϕ(x, t, w, λ)dν(x,t)(λ)dxdt

provided that the negative part ϕ−(x, t, wk, Dwk) is equiintegrable.

We conclude this section by recalling the following lemma which describes limits
points of gradients sequences by means of the Young measures.

Lemma 2.5 ([5]). The Young measure ν(x,t) generated by Dwk in Lp(0, T ;Lp(Ω))
satisfy the following properties:

(i) ν(x,t) is a probability measure, i.e., ‖ν(x,t)‖M(Mm×n) = 1 for a.e. (x, t) ∈ Q.

(ii) The weak L1-limit of Dwk is given by 〈ν(x,t), id〉.
(iii) For a.e. (x, t) ∈ Q, 〈ν(x,t), id〉 = Dw(x, t).

3. Basic assumptions and the main result

Let Q = Ω×(0, T ), where Ω is a bounded open subset of Rn and T > 0. Consider

the problem (1.1)-(1.3) with f ∈ Lp′(0, T ;W−1,p′(Ω;Rm)), p′ = p/(p − 1). To study
this problem we assume the following hypothesis.
(H0) σ : Q×Rm×Mm×n →Mm×n and σ0 : Q×Rm×Mm×n → Rm are Carathéodory
functions (i.e., continuous with respect to (t, s, ξ) ∈ (0, T )×Rm×Mm×n for a.e. x ∈ Ω
and measurable with respect to x for all (t, s, ξ) ∈ (0, T ) × Rm ×Mm×n). Moreover,
the mapping ξ → σ0(x, t, s, ξ) is linear.

(H1) There exist α > 0, d1 ∈ Lp
′
(Q) and d2 ∈ L1(Q) such that∣∣σ(x, t, s, ξ)
∣∣ ≤ d1(x, t) + |s|p−1 + |ξ|p−1,

σ(x, t, s, ξ) : ξ ≥ α|ξ|p,∣∣σ0(x, t, s, ξ)
∣∣ ≤ b(|s|)(d2(x, t) + |ξ|p

)
,

σ0(x, t, s, ξ).s ≥ 0,

where b : R+ → R+ is a continuous and increasing function.
(H2) σ satisfies one of the following (monotonicity) conditions:

(i) for all (x, t) ∈ Q and all u ∈ Rm, the map ξ 7→ σ(x, t, u, ξ) is a C1-function and
is monotone, i.e.,(

σ(x, t, u, ξ)− σ(x, t, u, η)
)

: (ξ − η) ≥ 0 ∀ξ, η ∈Mm×n.

(ii) there exists a function b : Q× Rm ×Mm×n → R such that

σ(x, t, u, ξ) =
(
∂b/∂ξ

)
(x, t, u, ξ) := Dξb(x, t, u, ξ),

and ξ 7→ b(x, t, u, ξ) is convex and a C1-function for all (x, t) ∈ Q and all u ∈ Rm.
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(iii) σ is strictly monotone, i.e., σ is monotone and(
σ(x, t, u, ξ)− σ(x, t, u, η)

)
: (ξ − η) = 0 implies ξ = η.

(iv) σ is strictly p-quasimonotone, i.e.,∫
Q

∫
Mm×n

(
σ(x, t, u, λ)− σ(x, t, u, λ)

)
: (λ− λ)dνx(x, t)(λ)dxdt > 0,

where λ = 〈ν(x,t), id〉, ν = {ν(x,t)}(x,t)∈Q is any family of Young measures gen-
erated by a sequence in Lp(Q) which are not a single Dirac mass.

In what follows, 〈., .〉 denotes the duality pairing between Lp(0, T ;W 1,p
0 (Ω;Rm))

and Lp
′
(0, T ;W−1,p′(Ω;Rm)), Qτ = Ω× (0, τ) for τ ∈ (0, T ].

Definition 3.1. A function u ∈ Lp(0, T ;W 1,p
0 (Ω;Rm)) ∩ L∞(0, T ;L2(Ω;Rm)) is a

weak solution of problem (1.1)-(1.3) if σ0(x, t, u,Du) ∈ L1(Q;Rm), σ0(x, t, u,Du)u ∈
L1(Q;Rm) and

−
∫
Q

u
∂ϕ

∂t
dxdt+

∫
Ω

uϕdx
∣∣T
0

+

∫
Q

σ(x, t, u,Du) : Dϕdxdt

+

∫
Q

σ0(x, t, u,Du)ϕdxdt = 〈f, ϕ〉

holds for all ϕ ∈ Lp(0, T ;W 1,p
0 (Ω;Rm)) ∩ L∞(Q;Rm).

Our main result is the following

Theorem 3.2. Let f ∈ Lp
′
(0, T ;W−1,p′(Ω;Rm)) and u0 ∈ L2(Ω;Rm). Assume that

(H0)-(H2) are fulfilled. Then there exists a weak solution u ∈ Lp(0, T ;W 1,p
0 (Ω;Rm))∩

C(0, T ;L2(Ω;Rm)) of the problem (1.1)-(1.3) in the sense of Definition 3.1.

4. Proof of the main result

We divide the proof into several steps.
Step 1 Galerkin solutions. We choose a sequence of functions

{wi}i≥1 ⊂ C∞0 (Ω;Rm)

orthonormal with respect to L2(Ω;Rm) such that ∪j≥1Vj , where

Vj = span{w1, ..., wj}
is dense in Hs

0(Ω;Rm) with s large enough such as s > n/2 + 1, so that Hs
0(Ω;Rm) is

continuously embedded in C1(Ω) (see [1]). We define Wj = C1(0, T ;Vj). Therefore,

we have C∞0 (Q;Rm) ⊂ ∪j≥1Wj
C1(Q;Rm)

. Note that there exists uk0 ⊂ ∪j≥1Vj such
that uk0 → u0 in L2(Ω;Rm).

Definition 4.1. A function uk ∈ Wk is called Galerkin solution of (1.1)-(1.3) if and
only if∫

Ω

∂uk
∂t

vdx+

∫
Ω

σ(x, t, uk, Duk) : Dvdx+

∫
Ω

σ0(x, t, uk, Duk).vdx =

∫
Ω

f(t)vdx

(4.1)



346 Farah Balaadich and Elhoussine Azroul

for all v ∈ Vk and all t ∈ [0, T ] with uk(x, 0) = uk0(x).

Setting

uk(x, t) =

k∑
i=1

di(t)wi(x),

we then try to look for the coefficients di ∈ C1([0, T ]). To do this, we define a vector
valued function yk : [0, T ]× Rk → Rk for d = (d1, ..., dk) by(

yk(t, d)
)
i

=

∫
Ω

σ
(
x, t,

k∑
j=1

dj(t)wj(x),

k∑
j=1

dj(t)Dwj(x)
)

: Dwi(x)dx

+

∫
Ω

σ0

(
x, t,

k∑
j=1

dj(t)wj(x),

k∑
j=1

dj(t)Dwj(x)
)
.wi(x)dx,

for i = 1, ..., k. Note that yk(t, d) is continuous because σ and σ0 are both
Carathéodory functions. Therefore, we obtain the following system of ordinary differ-
ential equations {

d′ + yk(t, d) = F,
d(0) = vk,

where (
F (t)

)
i

=

∫
Ω

f(t)widx and (vk)i =

∫
Ω

uk0widx, for i = 1, ..., k.

Multiplying the first equation by d(t) and using (H1) (coercivity of σ and sign condi-
tion of σ0) one gets yk(t, d)d ≥ 0. By virtue of the Young inequality, it yields

1

2

d

dt

∣∣d(t)
∣∣2 ≤ ∣∣F (t)

∣∣∣∣d(t)
∣∣ ≤ 1

2

(∣∣F (t)
∣∣2 +

∣∣d(t)
∣∣2).

Then, Gronwall’s lemma allows to deduce that∣∣d(t)
∣∣ ≤ C(T ).

Thus, we get
∣∣d(t)−d(0)

∣∣ ≤ 2C(T ). Now, let us define Ak = maxt∈[0,T ]

∣∣F−yk(t, d(t))
∣∣

and q = min
{
T, 2C(T )

Ak

}
. By the Cauchy-Peano theorem (cf. [3]) we obtain a local

solution in [0, q]. Starting with the initial value q, we obtain a local solution in [q, 2q]
and so on we get a local solution dk in C1([0, T ]). Therefore, by construction, we know

that the function uk(x, t) =
∑k
i=1 dki(t)wi(x), which belongs to Wk, is a Galerkin

solution for (1.1)-(1.3) satisfying∫
Qτ

∂uk
∂t

vdxdt+

∫
Qτ

σ(x, t, uk, Duk) : Dvdxdt

+

∫
Qτ

σ0(x, t, uk, Duk).vdxdt =

∫
Qτ

fvdxdt,

(4.2)

for all v ∈Wk and all τ ∈ (0, T ] with uk(x, 0) = uk0(x).
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Step 2 A priori estimates. In the sequel, C will denotes a positive constant which may
change values from line to line and which depends on the parameters of our problem.
Let uk be a Galerkin solution of (1.1)-(1.3). Choosing uk as test function in (4.2), we
get ∫

Qτ

∂uk
∂t

ukdxdt+

∫
Qτ

σ(x, t, uk, Duk) : Dukdxdt

+

∫
Qτ

σ0(x, t, uk, Duk).ukdxdt =

∫
Qτ

fukdxdt,

(4.3)

for every τ ∈ (0, T ]. By virtue of (H1) (coercivity condition) and Hölder’s inequality,
we can write

1

2
‖uk(τ)‖2L2(Ω) + α

∫
Qτ

|Duk|pdxdt

≤ ‖f‖Lp′ (0,T ;W−1,p′ (Ω))‖uk‖Lp(0,T ;W 1,p
0 (Ω)) +

1

2
‖u0‖2L2(Ω),

(4.4)

which implies that

α‖Duk‖pp ≤ ‖f‖Lp′ (0,T ;W−1,p′ (Ω))‖uk‖Lp(0,T ;W 1,p
0 (Ω)) +

1

2
‖u0‖2L2(Ω).

Therefore

‖uk‖Lp(0,T ;W 1,p
0 (Ω)) ≤ C. (4.5)

By virtue of (4.4), the sequence (uk) is bounded in Lp(0, T ;W 1,p
0 (Ω;Rm)) ∩

L∞(0, T ;L2(Ω;Rm)). Since∫
Qτ

∣∣σ(x, t, uk, Duk)
∣∣p′dxdt ≤ ∫

Qτ

(
d1(x, t)p

′
+ |uk|p + |Duk|p

)
dxdt ≤ C,

then ∥∥σ(x, t, uk, Duk)
∥∥
Lp′ (Q;Mm×n)

≤ C.

Going back to (4.3), we obtain

0 ≤
∫
Qτ

σ0(x, t, uk, Duk).ukdxdt ≤ C. (4.6)

Let N > 0 be fixed. By the condition (H1) and above inequality we can write∫
Qτ

∣∣σ0(x, t, uk, Duk)
∣∣dxdt

=

∫
Qτ∩{|uk|≤N}

∣∣σ0(x, t, uk, Duk)
∣∣dxdt+

∫
Qτ∩{|uk|>N}

∣∣σ0(x, t, uk, Duk)
∣∣dxdt

≤
∫
Qτ∩{|uk|≤N}

∣∣σ0(x, t, uk, Duk)
∣∣dxdt+

1

N

∫
Qτ

σ0(x, t, uk, Duk).ukdxdt

≤
∫
Qτ∩{|uk|≤N}

b(|uk|)
(
d3(x, t) + |Duk|p

)
dxdt+

C

N

≤ b(N)
(
‖d2‖L1(Qτ ) + ‖Duk‖pLp(Qτ )

)
+
C

N
≤ C. (4.7)
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Hence, the sequence σ0(x, t, uk, Duk) is uniformly bounded in L1(Q;Rm). There-
fore, for a subsequence still indexed by k and for a measurable functions
u ∈ Lp(0, T ;W 1,p(Ω;Rm)) ∩ L∞(0, T ;L2(Ω;Rm)), Σ ∈ Lp

′
(Q;Mm×n) and Σ0 ∈

L1(Q;Rm)

uk ⇀ u weakly in Lp(0, T ;W 1,p(Ω;Rm)),

uk ⇀
∗ u weakly in L∞(0, T ;L2(Ω;Rm)),

σ(x, t, uk, Duk) ⇀ Σ weakly in Lp
′
(Q;Mm×n),

σ0(x, t, uk, Duk) ⇀ Σ0 weakly in L1(Q;Rm),

uk −→ u strongly in L1(Q;Rm).

(4.8)

The last property in (4.8) comes from the fact that,

∂uk
∂t

= f + divσ(x, t, uk, Duk)− σ0(x, t, uk, Duk)

is bounded in Lp
′
(0, T ;W−1,p′(Ω;Rm)) + L1(Q;Rm).

Lemma 4.2. The sequence (uk) constructed above satisfy uk(., T ) ⇀ u(., T ) in
L2(Ω;Rm) and u(., 0) = u0(.).

Proof. Since (uk) is bounded in L∞(0, T ;L2(Ω;Rm)), up to a subsequence, we have

uk(., T ) ⇀ z in L2(Ω;Rm) as k →∞.

Let us denote u(., T ) as u(T ) and u(., 0) as u(0) (for simplicity).
Let v ∈ Vj ∩ L∞(Ω;Rm), j ≤ k and ψ ∈ C∞([0, T ]), then we have (take τ = T )∫

Q

∂uk
∂t

vψdxdt+

∫
Q

σ(x, t, uk, Duk) : Dvψdxdt

+

∫
Q

σ0(x, t, uk, Duk).vψdxdt =

∫
Q

fvψdxdt.

The integration of the first term allows to write∫
Ω

uk(T )ψ(T )vdx−
∫

Ω

uk(0)ψ(0)vdx+

∫
Q

σ(x, t, uk, Duk) : Dvψdxdt

+

∫
Q

σ0(x, t, uk, Duk).vψdxdt =

∫
Q

fvψdxdt+

∫
Q

ukvψ
′dxdt.

By virtue to (4.8), we obtain in passing to the limit as k →∞∫
Ω

zψ(T )vdx−
∫

Ω

u0ψ(0)vdx+

∫
Q

Σ : Dvψdxdt+

∫
Q

Σ0.vψdxdt

=

∫
Q

fvψdxdt+

∫
Q

uvψ′dxdt.

(4.9)
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Let ψ(T ) = ψ(0) = 0, then∫
Q

Σ : Dvψdxdt+

∫
Q

Σ0.vψdxdt =

∫
Q

fvψdxdt+

∫
Q

uvψdxdt

=

∫
Q

fvψdxdt−
∫
Q

u′vψdxdt.

Going back to (4.9), one has∫
Ω

zψ(T )vdx−
∫

Ω

u0ψ(0)vdx =

∫
Q

u′vψdxdt+

∫
Q

uvψ′dxdt

=

∫
Ω

u(T )ψ(T )vdx−
∫

Ω

u(0)ψ(0)vdx.

Now, tending j to ∞, if we take ψ(T ) = 0 and ψ(0) = 1, then we obtain u(0) = u0,
if we take ψ(T ) = 1 and ψ(0) = 0, then u(T ) = z. Therefore uk(., T ) ⇀ u(., T ) in
L2(Ω;Rm). �

Step 3 div-curl inequality. As stated in the introduction we will use the tool of
Young measures to pass to the limit. To this purpose, since (uk) is bounded in

Lp(0, T ;W 1,p
0 (Ω;Rm)), there exists a Young measure ν(x,t) generated by Duk in

Lp(0, T ;Lp(Ω)), by Lemma 2.1. Moreover, ν(x,t) satisfy the properties of Lemma 2.5.
The crucial point in the proof of this Section is the following lemma, namely div-

curl inequality, which allows the passage to the limit in the approximating equations.

Lemma 4.3. Assume that (H0)-(H2) hold. Then the Young measure ν(x,t) generated
by Duk satisfies∫

Q

∫
Mm×n

(
σ(x, t, u, λ)− σ(x, t, u,Du)

)
: (λ−Du)dν(x,t)(λ)dxdt ≤ 0.

Proof. Let us consider the sequence

Ik :=
(
σ(x, t, uk, Duk)− σ(x, t, u,Du)

)
: (Duk −Du),

and let us prove that its negative part I−k is equiintegrable on Q. To do this, we write

I−k in the form

Ik = σ(x, t, uk, Duk) : (Duk −Du)− σ(x, t, u,Du) : (Duk −Du)

=: Ik,1 + Ik,2.

Since d1 ∈ Lp
′
(Q), it follows by (H1) that∫

Q

∣∣σ(x, t, u,Du)
∣∣p′dxdt ≤ C.

Thus, σ(., ., u,Du) ∈ Lp
′
(Q;Mm×n) for arbitrary u ∈ Lp(0, T ;W 1,p

0 (Ω;Rm)), and
Lemma 2.5 allows to write

lim inf
k→∞

∫
Q

Ik,2dxdt =

∫
Q

σ(x, t, u,Du) :
(∫

Mm×n
λdν(x,t)(λ)−Du

)
dxdt = 0. (4.10)
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Let Q′ be a measurable subset of Q, by the Hölder inequality and (H1) it follows that∫
Q′

∣∣σ(x, t, uk, Duk) : Du
∣∣dxdt

≤
(∫

Q′

∣∣σ(x, t, uk, Duk)
∣∣p′dxdt) 1

p′
(∫

Q′
|Du|pdxdt

) 1
p

≤
(∫

Q′

∣∣d1(x, t)
∣∣p′ + |uk|p + |Duk|p

)
dxdt

) 1
p′
(∫

Q′
|Du|pdxdt

) 1
p

.

The first integral on the right hand side of the above inequality is uniformly bounded,
by the boundedness of (uk)k. The second integral is arbitrary small if the measure of
Q′ is chosen small enough. Hence,

(
σ(x, t, uk, Duk) : Du

)
is equiintegrable. A similar

argument gives the equiintegrability of
(
σ(x, t, uk, Duk) : Duk

)
. Therefore Ik,1 is

equiintegrable, and by virtue of Lemma 2.4

I := lim inf
k→∞

∫
Q

Ikdxdt ≥
∫
Q

∫
Mm×n

σ(x, t, u, λ) : (λ−Du)dν(x,t)(λ)dxdt.

To deduce the needed inequality, it is sufficient to show that I ≤ 0. We have∫
Q

∂uk
∂t

ukdxdt+

∫
Q

σ(x, t, uk, Duk) : Dukdxdt

+

∫
Q

σ0(x, t, uk, Duk).ukdxdt =

∫
Q

fukdxdt,

then

I = lim inf
k→∞

∫
Q

σ(x, t, uk, Duk) : (Duk −Du)dxdt

= lim inf
k→∞

(∫
Q

σ(x, t, uk, Duk) : Dukdxdt−
∫
Q

σ(x, t, uk, Duk) : Dudxdt
)

= lim inf
k→∞

(∫
Q

fukdxdt−
∫
Q

∂uk
∂t

ukdxdt−
∫
Q

σ0(x, t, uk, Duk).ukdxdt

−
∫
Q

σ(x, t, uk, Duk) : Dudxdt
)
.

(4.11)

Remark first that
∫
Q
f(uk − u)dxdt tends to zero as k tends to ∞. By Lemma 4.2 we

have

‖uk(., 0)‖L2(Ω) → ‖u(., 0)‖L2(Ω) and ‖u(., T )‖L2(Ω) ≤ lim inf
k→∞

‖uk(., T )‖L2(Ω),

which imply

lim inf
k→∞

(
−
∫
Q

∂uk
∂t

ukdxdt
)
≤ 1

2
‖u(., 0)‖2L2(Ω) −

1

2
‖u(., T )‖2L2(Ω).
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Now, take ψ ∈ C1(0, T ;Vj) ∩ L∞(Q;Rm), j ≤ k, we have∫
Q

∂uk
∂t

ψdxdt+

∫
Q

σ(x, t, uk, Duk) : Dψdxdt+

∫
Q

σ0(x, t,uk, Duk).ψdxdt

=

∫
Q

fψdxdt.

The first integral (after integration) is equal to∫
Ω

uk(., T )ψ(., T )dx−
∫

Ω

uk(., 0)ψ(., 0)dx−
∫
Q

uk
∂ψ

∂t
dxdt.

By tending k to infinity, one has∫
Ω

u(., T )ψ(T )dx−
∫

Ω

u(., 0)ψ(0)dx−
∫
Q

u
∂ψ

∂t
dxdt

+

∫
Q

Σ : Dψdxdt+

∫
Q

Σ0.ψdxdt =

∫
Q

fψdxdt.

Passing j to ∞, it result for all ψ ∈ C1(0, T ;C1(Ω)) that∫
Ω

u(., T )ψ(T )dx−
∫

Ω

u(., 0)ψ(0)dx−
∫
Q

u
∂ψ

∂t
dxdt

+

∫
Q

Σ : Dψdxdt+

∫
Q

Σ0.ψdxdt =

∫
Q

fψdxdt,

i.e.,

−
∫
Q

u
∂ψ

∂t
dxdt+

∫
Q

Σ : Dψdxdt+

∫
Q

Σ0.ψdxdt =

∫
Q

fψdxdt,

for all ψ ∈ C∞0 (Q) ⊂ C1(0, T ;C∞0 (Ω;Rm)). Consequently

∂u

∂t
− div Σ + Σ0 = f.

Hence, for u ∈ Lp(0, T ;W 1,p
0 (Ω;Rm)) ∩ L∞(Q;Rm)

−
∫
Q

Σ : Dudxdt−
∫
Q

Σ0.udxdt = −
∫
Q

fudxdt+

∫
Q

u
∂u

∂t
dxdt.

Gathering the above results in the Eq. (4.11), it result that I ≤ 0. �

Step 4 Passage to the limit. The passage to the limit will be concern the four cases
listed in assumption (H2). Remark first that from Lemma 4.3 and monotonicity of
the function σ, it follows that∫

Q

∫
Mm×n

(
σ(x, t, u, λ)− σ(x, t, u,Du)

)
: (λ−Du)dν(x,t)(λ)⊗ dx⊗ dt = 0

implies (
σ(x, t, u, λ)− σ(x, t, u,Du)

)
: (λ−Du) = 0 on supp ν(x,t). (4.12)

Now, we have all ingredients to pass to the limit in the approximating equations.
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Case (i): Let ∇ denotes the derivative of σ with respect to its last variable. We prove
that

σ(x, t, u, λ) : ξ = σ(x, t, u,Du) : ξ +
(
∇σ(x, t, u,Du)ξ

)
: (Du− λ)

holds on supp ν(x,t), for all ξ ∈Mm×n. Let τ ∈ R, from the monotonicity of σ we infer
that (

σ(x, t, u, λ)− σ(x, t, u,Du+ τξ)
)

: (λ−Du− τξ) ≥ 0.

The above inequality together with (4.12) imply

−σ(x, t, u,λ) : τξ

≥ −σ(x, t, u, λ) : (λ−Du) + σ(x, t, u,Du+ τξ) : (λ−Du− τξ)
= −σ(x, t, u,Du) : (λ−Du) + σ(x, t, u,Du+ τξ) : (λ−Du− τξ).

Since σ(x, t, u,Du+ τξ) = σ(x, t, u,Du) +∇σ(x, t, u,Du)τξ + o(τ), we get

−σ(x, t, u, λ) : τξ ≥ τ
((
∇σ(x, t, u,Du)

)
ξ : (λ−Du)− σ(x, t, u,Du) : ξ

)
.

The choice of τ to be arbitrary in R implies the needed equality

σ(x, t, u, λ) : ξ = σ(x, t, u,Du) : ξ +
(
∇σ(x, t, u,Du)ξ

)
: (Du− λ).

Using the equiintegrability of σ(x, t, uk, Duk) and above equality to deduce that its
weak L1-limit is

σ :=

∫
Mm×n

σ(x, t, u, λ)dν(x,t)(λ)

=

∫
supp ν(x,t)

σ(x, t, u, λ)dν(x,t)(λ)

=

∫
supp ν(x,t)

(
σ(x, t, u,Du) +

(
∇σ(x, t, u,Du)

)
: (Du− λ)

)
dν(x,t)(λ)

= σ(x, t, u,Du)

∫
supp ν(x,t)

dν(x,t)(λ)︸ ︷︷ ︸
=:1

+
(
∇σ(x, t, u,Du)

)t∫
supp ν(x,t)

(Du− λ)dν(x,t)(λ)︸ ︷︷ ︸
=0

= σ(x, t, u,Du).

We have σ(x, t, uk, Duk) is bounded in Lp
′
(Q;Mm×n) reflexive, then σ(x, t, uk, Duk)

is weakly convergent in Lp
′
(Q;Mm×n) and its weak Lp

′
-limit is also σ(x, t, u,Du).

Case (ii): In this case we prove that, if λ ∈ supp ν(x,t) then

b(x, t, u, λ) = b(x, t, u,Du) + σ(x, t, u,Du) : (λ−Du).

Suppose that λ ∈ supp ν(x,t), from (4.12) it follows for τ ∈ [0, 1]

(1− τ)
(
σ(x, t, u,Du)− σ(x, t, u, λ)

)
: (Du− λ) = 0.
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The above expression together with monotonicity of σ allow to write

0 ≤ (1− τ)
(
σ
(
x, t, u,Du+ τ(λ−Du)

)
− σ(x, t, u, λ)

)
: (Du− λ)

= (1− τ)
(
σ
(
x, t, u,Du+ τ(λ−Du)

)
− σ(x, t, u,Du)

)
: (Du− λ).

(4.13)

Since σ is monotone, we have(
σ
(
x, t, u,Du+ τ(λ−Du)

)
− σ(x, t, u,Du)

)
: τ(λ−Du) ≥ 0

which implies since τ ∈ [0, 1](
σ
(
x, t, u,Du+ τ(λ−Du)

)
− σ(x, t, u,Du)

)
: (1− τ)(λ−Du) ≥ 0.

From this inequality and (4.13) we can infer that(
σ
(
x, t, u,Du+ τ(λ−Du)

)
− σ(x, t, u,Du)

)
: (λ−Du) = 0 ∀τ ∈ [0, 1],

i.e.,

σ
(
x, t, u,Du+ τ(λ−Du)

)
: (λ−Du) = σ(x, t, u,Du) : (λ−Du).

We know that (by hypothesis)

σ
(
x, t, u,Du+ τ(λ−Du)

)
: (λ−Du) =

∂b

∂τ

(
x, t, u,Du+ τ(λ−Du)

)
: (λ−Du)

for τ ∈ [0, 1]. By integration of the above equation over [0, 1], it follows that

b(x, t, u, λ) = b(x, t, u,Du) +

∫ 1

0

σ
(
x, t, u,Du+ τ(λ−Du)

)
: (λ−Du)dτ

= b(x, t, u,Du) + σ(x, t, u,Du) : (λ−Du)

as we desired. Let us denotes

K(x,t) =
{
λ ∈Mm×n : b(x, t, u, λ) = b(x, t, u,Du) + σ(x, t, u,Du) : (λ−Du)

}
.

From the above results, λ ∈ K(x,t). Since b is convex, we can write

b(x, t, u, λ)︸ ︷︷ ︸
=:B1(λ)

≥ b(x, t, u,Du) + σ(x, t, u,Du) : (λ−Du)︸ ︷︷ ︸
=:B2(λ)

.

Since λ 7→ B1(λ) is C1-function, then for ξ ∈Mm×n and τ ∈ R

B1(λ+ τξ)−B1(λ)

τ
≥ B2(λ+ τξ)−B2(λ)

τ
for τ > 0,

B1(λ+ τξ)−B1(λ)

τ
≤ B2(λ+ τξ)−B2(λ)

τ
for τ < 0.

Consequently DλB1 = DλB2, i.e.,

σ(x, t, u, λ) = σ(x, t, u,Du) on supp ν(x,t) ⊂ K(x,t). (4.14)

Consdier the function g(x, t, s, λ) = |σ(x, t, s, λ)−σ(x, t)|. Then g is a Carathéodoroy
function by that of σ. Moreover, since σ(x, t, uk, Duk) is equiintegrable, thus
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gk(x, t) := g(x, t, uk, Duk) is also equiintegrable, hence gk ⇀ g in L1(Q) (in fact,
this convergence is strong since gk ≥ 0), where

g(x, t) =

∫
Rm×Mm×n

∣∣σ(x, t, s, λ)− σ(x, t)
∣∣dδu(x,t)(s)⊗ dν(x,t)(λ)

=

∫
Mm×n

∣∣σ(x, t, u, λ)− σ(x, t)
∣∣dν(x,t)(λ)

=

∫
supp ν(x,t)

∣∣σ(x, t, u, λ)− σ(x, t, u,Du)
∣∣dν(x,t)(λ) = 0

by (4.14).

Case (iii): On the one hand, by Eq. (4.12) we deduce that ν(x,t) = δDu(x,t) for a.e.
(x, t) ∈ Q. By virtue of the first property in Lemma 2.3, one gets

Duk → Du in measure as k →∞.

On the other hand, since (uk) is bounded in Lp(0, T ;W 1,p
0 (Ω;Rm)), up to a subse-

quence, uk → u in measure. Therefore (for a subsequence) uk → u and Duk → Du
almost everywhere for k →∞. The continuity of the function σ implies

σ(x, t, uk, Duk)→ σ(x, t, u,Du) almost everywhere as k →∞.

The Vitali convergence theorem implies σ(x, t, uk, Duk)→ σ(x, t, u,Du) in L1(Q), by
the boundedness and equiintegrability of σ(x, t, uk, Duk).

Case (iv): Assume that ν(x,t) is not a Dirac measure on a set (x, t) ∈ Q′ of positive

measure. We have λ = 〈ν(x,t), id〉 = Du(x, t), thus∫
Q

∫
Mm×n

σ(x, t, u, λ) : (λ− λ)dν(x,t)(λ)dxdt

=

∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ)dxdt

−
∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ)dxdt

=

∫
Q

σ(x, t, u, λ) :
(∫

Mm×n
λdν(x,t)(λ)

)
dxdt

−
∫
Q

σ(x, t, u, λ) : λ
(∫

Mm×n
dν(x,t)(λ)

)
dxdt

= 0.

It follows by the strict p-quasimonotonicity of σ that∫
Q

∫
Mm×n

σ(x, t, u, λ) :λdν(x,t)(λ)dxdt

>

∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ)dxdt.
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By virtue of Lemma 4.3 (i.e., I ≤ 0), it result that∫
Q

∫
Mm×n

σ(x, t, u, λ) :λdν(x,t)(λ)dxdt

>

∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ)dxdt

≥
∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ)dxdt,

and this is a contradiction. Hence ν(x,t) is a Dirac measure, i.e., ν(x,t) = δh(x,t) for a.e.
(x, t) ∈ Q, thus

h(x, t) =

∫
Mm×n

λdδh(x,t)(λ) =

∫
Mm×n

λdν(x,t)(λ) = Du(x, t).

Thus ν(x,t) = δDu(x,t). Owing to Lemma 2.3, we get Duk → Du in measure. The
remainder of the proof of this case is similar to that in Case (iii).
To complete the proof of the main result, it remains to pass to the limit on the
nonlinearity term σ0(x, t, uk, Duk). From the convergence in measure of uk to u and
of Duk to Du, it then follows by the continuity of σ0, that

σ0(x, t, uk, Duk) −→ σ0(x, t, u,Du) almost everywhere in Q,

(for a subsequence). Let Q′ be a subset of Q and let N > 0. We can write∫
Q′
|σ0(x, t, uk, Duk)|dx

=

∫
Q′∩{|uk|≤N}

|σ0(x, t, uk, Duk)|dxdt+

∫
Q′∩{|uk|>N}

|σ0(x, t, uk, Duk)|dxdt.

By the third condition in (H1) together with (4.6), we obtain∫
Q′
|σ0(x, t,uk, Duk)|dxdt

≤ b(N)

∫
Q′
d2(x, t)dxdt+ b(N)

∫
Q′
|Duk|pdxdt+

C

N
≤ ε,

for some ε > 0. Applying Vitali’s theorem, we obtain

σ0(x, t, uk, Duk) −→ σ0(x, t, u,Du) strongly in L1(Q).

In addition, by Fatou’s Lemma, we get σ0(x, t, u,Du)u ∈ L1(Q).
Now, since σ0 is linear with respect to its last variable, then

σ0(x, t, uk, Duk) ⇀ 〈ν(x,t), σ0(x, t, u, .)〉

=

∫
Mm×n

σ0(x, t, u, λ)dν(x,t)(λ)

= σ0(x, t, u, .)o

∫
Mm×n

λdν(x,t)(λ)

= σ0(x, t, u,Du),

in L1(Q), by the equiintegrability of σ0.
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Taking ϕ ∈ C1(0, T ;Vj) ∩ L∞(Q;Rm), j ≤ k∫
Q

∂uk
∂t

ϕdxdt+

∫
Q

σ(x, t, uk, Duk) : Dϕdxdt+

∫
Q

σ0(x, t,uk, Duk).ϕdxdt

=

∫
Q

fϕdxdt.

By integrating the first term and letting j → ∞, it follows from the above results,
that for ϕ ∈ C1(0, T ;C∞0 (Ω)) ∩ L∞(Q;Rm)

−
∫
Q

u
∂ϕ

∂t
dxdt+

∫
Ω

uϕdx
∣∣T
0

+

∫
Q

σ(x, t, u,Du) : Dϕdxdt

+

∫
Q

σ0(x, t, u,Du).ϕdxdt =

∫
Q

fϕdxdt

as k →∞. Hence u ∈ Lp(0, T ;W 1,p
0 (Ω;Rm)) ∩ L∞(0, T ;L2(Ω;Rm)) is in fact a weak

solution for (1.1)-(1.3).
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