ON THE STABILITY OF THE ALTERNATIVE METHOD

DAMIAN TRIF

Abstract

The stability of the alternative method is investigated. An optimization of the volume of computation for the numerical approximation of a solution of the equation $L u=N u$ is also given.

1. Introduction

The stability of the fixed point iteration procedures has been investigated by A.M. Harder and T.L. Hicks [1]:

Definition 1. Let (X, d) be a metric space, $T: X \rightarrow X, x_{0} \in X$ and the iteration procedure $x_{n+1}=f\left(T, x_{n}\right)$. If $x_{n} \rightarrow p$, where p is a fixed point of T, let $y_{n} \in X$ and $\varepsilon_{n}=d\left(y_{n+1}, f\left(T, y_{n}\right)\right)$. If $\varepsilon_{n} \rightarrow 0$ implies $y_{n} \rightarrow p$ then the iteration procedure f is T-stable relating to T.

If T is a contraction, a theorem of Ostrowski [1] shows that the iteration procedure $f\left(T, x_{n}\right)=T x_{n}$ is T-stable:

Theorem 1. Let $T: X \rightarrow X$ be a contraction on the complete metric space (X, d). Let p a fixed point of $T, x_{0} \in X ; x_{n+1}=T x_{n}, n=0,1, \ldots$ be. Let $y_{n} \in X$ and $\varepsilon_{n}=d\left(y_{n+1}, T y_{n}\right), n=0,1, \ldots$ Then

1. $d\left(p, y_{n+1}\right) \leq(1-k)^{-1}\left(\varepsilon_{n}+k d\left(y_{n}, y_{n+1}\right)\right)$
2. $d\left(p, y_{n+1}\right) \leq d\left(p, x_{n+1}\right)+k^{n+1} d\left(x_{0}, y_{0}\right)+\sum_{i=0}^{n} k^{n-i} \varepsilon_{i}$
3. $y_{n} \rightarrow p$ if and only if $\varepsilon_{n} \rightarrow 0$.

If X is a Banach space, $E: X_{E} \rightarrow X$ is a linear operator and $N: X_{N} \rightarrow X$ is a nonlinear operator, let us consider the equation $E u=N u, u \in X_{E} \cap X_{N}$.

[^0]If E is an invertible operator, this equation is equivalent to $u=E^{-1} N u$, a fixed point problem for $T=E^{-1} N$. If T is a contraction, Theorem 2 applies. If T is not a contraction or E is not invertible, the equation $E u=N u$ is studied by the alternative (Lyapunov-Schmidt) method. Using an idea of Sanchez [2] it is easy to conclude that the alternative method is T-stable. An optimization of the volume of computation for the numerical approximation of the solution of the equation $E u=N u$ by the alternative method is also given.

2. The stability of the alternative method

Let X be a Banach space, $E: X_{E} \rightarrow X$ a linear operator, $N: X_{N} \rightarrow X$ a nonlinear operator and we suppose that
a): there exists a projection $P: X \rightarrow X$ such that $X=R(P) \oplus R(I-P)$ and $P E=E P$
b): there exists $H: R(I-P) \rightarrow R(I-P)$, a linear operator such that

$$
\begin{aligned}
H(I-P) E u & =(I-P) u \text { for all } u \in X_{E} \\
E H(I-P) N u & =(I-P) N u \text { for all } u \in X_{N}
\end{aligned}
$$

c): all the fixed points of $P+H(I-P) N$ are in X_{E}.

Theorem 2. $E u=N u$ if and only if

$$
\begin{gathered}
(I-P) u=H(I-P) N u \\
P(E P u-N u)=0
\end{gathered}
$$

Let $D: R(P) \rightarrow R(P)$ be a linear, invertible and with bounded inverse operator. For $a, b>0$ we define

$$
C=\left\{(v, w) \mid v \in R(P),\left\|v-v_{0}\right\| \leq a, w \in R(I-P),\|w\| \leq b\right\}
$$

where $v_{0} \in R(P)$ is an approximation of the solution of the equation $E u=N u$. On C we define $\|(v, w)\|=\|v\|+\|w\|$. Let $p \in \mathbb{N}, \mathrm{u}=\mathrm{v}+\mathrm{w}$ where $(v, w) \in C$, $w^{0}=w, w^{i}=H(I-P) N\left(v+w^{i-1}\right)$, for $i=1,2, \ldots, p+1$ and $W=w^{p+1}$. Let $V=v-D^{-1} P(E v-N(v+W))$. We define an operator on C by $T(v, w)=(V, W)$. We remark that in the paper of Sanchez [2], $p=0$.

Theorem 3. If

1. there exists $\eta \geq 0$ such that $(v, w) \in C$ implies $\|N(v+w)\| \leq \eta$
2. $H(I-P)$ is a bounded operator and $\|H(I-P)\| \leq b / \eta$
3. there exists $\sigma \geq 0$ such that $\left\|D^{-1}\right\| \sigma<1$ and if $\left(v_{1}, w\right),\left(v_{2}, w\right) \in C$ then $\left\|D\left(v_{1}-v_{2}\right)-P\left(E v_{1}-N\left(v_{1}+w\right)-E v_{2}+N\left(v_{2}+w\right)\right)\right\| \leq \sigma\left\|v_{1}-v_{2}\right\|$
4. there exists $\gamma \geq 0$ such that $\left(v_{0}, w\right) \in C$ implies

$$
\left\|D^{-1} P\left(E v_{0}-N\left(v_{0}+w\right)\right)\right\| \leq \gamma \leq\left(1-\left\|D^{-1}\right\| \sigma\right) a
$$

then T applies C into C.
Proof. From $(v, w) \in C$ we have $\left(v, w^{k}\right) \in C$ for all k thus

$$
\|W\|=\left\|H(I-P) N\left(v+w^{p}\right)\right\| \leq b / \eta \cdot \eta=b
$$

We have also

$$
\begin{gathered}
\left\|V-v_{0}\right\| \leq\left\|D^{-1}\right\|\left\|D\left(v-v_{0}\right)-P(E v-N(v+W))-P\left(E v_{0}-N\left(v_{0}+W\right)\right)\right\| \leq \\
\leq\left\|D^{-1}\right\| \sigma\left\|v-v_{0}\right\|+\left(1-\left\|D^{-1}\right\| \sigma\right) a \leq a
\end{gathered}
$$

Theorem 4. If the conditions $1-4$ of theorem 4 hold and
5) there exists $L>0$ such that if $u_{i}=v_{i}+w_{i},\left(v_{i}, w_{i}\right) \in C, i=1,2$ then $\left\|N u_{1}-N u_{2}\right\| \leq L\left\|u_{1}-u_{2}\right\|$
6) $\mu=\left\|D^{-1}\right\| \sigma+\left(1+\left\|D^{-1} P\right\| L\right)\left(\theta+\ldots+\theta^{p+1}\right)<1$, where $\theta=\|H(I-P)\| L$, then T is a contraction.

Proof. Let $T\left(v_{i}, w_{i}\right)=\left(V_{i}, W_{i}\right), i=1,2$. We have

$$
\left\|W_{1}-W_{2}\right\| \leq\|H(I-P)\| L\left(\left\|v_{1}-v_{2}\right\|+\left\|w_{1}^{p}-w_{2}^{p}\right\|\right)
$$

But

$$
\left\|w_{1}^{p}-w_{2}^{p}\right\| \leq\left(\left\|v_{1}-v_{2}\right\|+\left\|w_{1}^{p-1}-w_{2}^{p-1}\right\|\right)\|H(I-P)\| L
$$

thus

$$
\left\|W_{1}-W_{2}\right\| \leq\left\|v_{1}-v_{2}\right\|\left(\theta+\ldots+\theta^{p+1}\right)+\theta^{p+1}\left\|w_{1}-w_{2}\right\|
$$

Consequently,

$$
\begin{aligned}
\left\|V_{1}-V_{2}\right\| & +\left\|W_{1}-W_{2}\right\| \leq\left[\left\|D^{-1}\right\| \sigma+\left(1+\left\|D^{-1} P\right\| L\right)\left(\theta+\ldots+\theta^{p+1}\right)\right]\left\|v_{1}-v_{2}\right\|+ \\
& +\left(1+\left\|D^{-1} P\right\| L\right) \theta^{p+1}\left\|w_{1}-w_{2}\right\| \leq \mu\left(\left\|v_{1}-v_{2}\right\|+\left\|w_{1}-w_{2}\right\|\right)
\end{aligned}
$$

Hence T has an unique fixed point $(v, w)=(V, W) \in C$ that may be obtained by the iteration procedure $\left(v_{k+1}, w_{k+1}\right)=T\left(v_{k}, w_{k}\right)$.

Theorem 5. If the conditions of the theorems 4,5 hold, then $u=V+W$ is a solution of the equation $E u=N u$.

Proof. We have $w^{1}=W, \ldots, w^{p}=W$, that is $W=H(I-P) N(V+W)$. Then $V=V-D^{-1} P(E V-N(V+W))$ and consequently, $P(E V-N(V+W))=0$ and $E u=N u$ from theorem 3.

3. The optimization of the numerical computation of the solutions

We approximate the 2π-periodic solutions of the equation

$$
-u^{\prime \prime}(t)=f(t, u(t))
$$

Let X be the Banach space of 2π-periodic, continuous functions $u: \mathbb{R} \rightarrow$ $\mathbb{R},\|\mathbf{u}\|=\sup _{\mathrm{t} \in[0,2 \pi]}|\mathbf{u}(\mathrm{t})|, f$ a continuous, $2 \pi-$ periodic function on t, differentiable in u, with locally bounded derivative. Let $X_{E}=H^{2}(0,2 \pi), X_{N}=X, E u=-u^{\prime \prime}, N u=$ $f(\cdot, u)$.

If $u \in X$ let

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k t+b_{k} \sin k t\right)
$$

his Fourier series. We define, for $m \in \mathbb{N}$,

$$
\begin{gathered}
P_{m} u=\frac{a_{0}}{2}+\sum_{k=1}^{m}\left(a_{k} \cos k t+b_{k} \sin k t\right) \\
H\left(I-P_{m}\right) u=\sum_{k=m+1}^{\infty}\left(a_{k} \cos k t+b_{k} \sin k t\right) / k^{2}
\end{gathered}
$$

¿From [3] we have $\left\|H\left(I-P_{m}\right)\right\| \rightarrow 0$ when $m \rightarrow \infty$. For an approximation $v_{0} \in P_{m} X$ we define the sequence $w^{s}=H\left(I-P_{m}\right) N\left(v+w^{s-1}\right), w^{0}=0$, for $s=1,2, \ldots, p+1$. If m is sufficiently great then $\left(v, w^{s}\right) \in C$ if $\left\|v-v_{0}\right\| \leq a, v \in P_{m} X$. The second
equation $P(E P u-N u)=0$ becomes an equation for the Fourier coefficients of v, $F(c)=0$, where $c=\left(a_{0} / 2, a_{1}, b_{1}, \ldots a_{m}, b_{m}\right)$.

If the Jacobian $J\left(c_{0}\right)$ of F in v_{0} is invertible, let $D=J\left(c_{0}\right)$ and we use a theorem of Urabe [4]:

Theorem 6. Let us consider the system $F(c)=0, F=\left(F_{1}, \ldots, F_{n}\right), c=\left(c_{1}, \ldots, c_{n}\right)$ for $n \in \mathbb{N}$. We suppose that $F \in C^{1}(\Omega)$ and that there exists $k \in[0,1)$ and $\delta>0$ such that

1. $\Omega_{\delta}=\left\{c \in P_{m} X\left\|\mid c-c_{0}\right\| \leq \delta\right\} \subset \Omega$
2. $\left\|J(c)-J\left(c_{0}\right)\right\| \leq k / M$
3. $M r /(1-k) \leq \delta$
where $M \geq\left\|J^{-1}\left(c_{0}\right)\right\|, r \geq\left\|F\left(c_{0}\right)\right\|$.
Then the system $F(c)=0$ has an unique solution $\bar{c} \in \Omega_{\delta}$ and $\left\|\bar{c}-c_{0}\right\| \leq$ $M r /(1-k)$.

For a sufficiently great m the conditions of theorems 4,5 are consequences of the hypothesis of the Urabe's theorem. Hence the 2π-periodic solution u of the equation $-u^{\prime \prime}=f(t, u)$ is $u=V+W$, where W is obtained by a fixed point iteration procedure for $P_{m}+H\left(I-P_{m}\right) N$ and V is obtained by the Newton's algorithm for the system $F(c)=0$ (every step requires the iterations for W).

We consider the following error sources:
a) The computation of the Fourier coefficients (cf. [5]) of $w^{s}=H(I-$ $\left.P_{m}\right) N\left(v+w^{s-1}\right)$.

Theorem 7. If $g(t)$ is p times continuously differentiable, 2π-periodic and his Fourier series is

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k t+b_{k} \sin k t\right)
$$

then the Fourier coefficients may be approximated by

$$
a_{k} \approx \frac{1}{N} \sum_{i=1}^{2 N} g\left(t_{i}\right) \cos n t_{i} \quad b_{k} \approx \frac{1}{N} \sum_{i=1}^{2 N} g\left(t_{i}\right) \sin n t_{i}
$$

where $t_{i}=(2 i-1) \pi /(2 N), i=1, \ldots, 2 N$ and $k=1, \ldots, N-1$ and the approximation error is

$$
2 \sigma_{p}(N-1)\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} g^{(p)}(t)^{2} d t\right]^{1 / 2}
$$

where

$$
\sigma_{p}(N-1)=\sqrt{2}\left[\frac{1}{N^{2 p}}+\frac{1}{(N+1)^{2 p}}+\ldots\right]^{1 / 2}<\sqrt{\frac{2}{2 p-1}}(N-1)^{-p+1 / 2}
$$

b) The truncation of the Fourier series at rank $N-1$ (cf. [5]). We have

$$
\left|g(t)-\frac{a_{0}}{2}-\sum_{k=1}^{N-1}\left(a_{k} \cos k t+b_{k} \sin k t\right)\right| \leq \sigma_{p}(N-1)\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} g^{(p)}(t)^{2} d t\right]^{\frac{1}{2}}
$$

Consequently, if w^{s} is approximated by \widetilde{w}^{s} we have

$$
\begin{gathered}
\left\|w^{s}-\widetilde{w}^{s}\right\| \leq 2 \sqrt{N-m} \sigma_{p}(N-1)\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(v+w^{s-1}\right)^{(p)}(t)^{2} d t\right]^{\frac{1}{2}}(\sigma(m)-\sigma(N))+ \\
+\sigma_{p}(N-1)\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(v+w^{s-1}\right)^{(p)}(t)^{2} d t\right]^{\frac{1}{2}}
\end{gathered}
$$

where

$$
\sigma(m)=\left(\sum_{i=m+1}^{\infty} \frac{1}{i^{2}}\right)^{\frac{1}{2}}
$$

At every step we have an error $\varepsilon_{s} \leq \mathcal{K}\left(N_{s}-1\right)^{-p+1 / 2}$, where

$$
\mathcal{K}=\sqrt{\frac{2}{2 p-1}}(1+2 \sqrt{N-m}) \sigma(m) \max _{s \leq S}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} N\left(v+w^{s-1}\right)^{(p)}(t)^{2} d t\right]^{\frac{1}{2}}
$$

if $N_{s} \leq N$ for $s=1,2, \ldots, S$.
The whole error for S iterations is

$$
\left\|W-\widetilde{w}^{s+1}\right\| \leq \frac{\theta^{s+1} b}{1-\theta}+\sum_{i=0}^{S} \frac{\theta^{S}}{\theta^{i}} \frac{\mathcal{K}}{\left(N_{i}-1\right)^{p-1 / 2}} \equiv \varepsilon_{0}
$$

for a computational effort proportional to $2\left(N_{0}+\ldots+N_{S}\right)$.
Our problem is now to minimize this effort for a given error ε_{0}. Let $S \in \mathbb{N}$. We have to minimize $N_{0}+\ldots+N_{S}$ if

$$
\sum_{i=0}^{S} \frac{1}{\theta^{i}\left(N_{i}-1\right)^{p-1 / 2}}=\frac{\frac{\varepsilon_{0}}{\theta^{S}}-\frac{b \theta}{1-\theta}}{\mathcal{K}} \equiv A_{S}
$$

By the Lagrange multipliers rule, let

$$
L=N_{0}+\ldots+N_{S}+\lambda\left(\sum_{i=0}^{S} \frac{1}{\theta^{i}\left(N_{i}-1\right)^{p-1 / 2}}-A_{S}\right)
$$

We have the system

$$
\begin{gathered}
1-\frac{\lambda\left(p-\frac{1}{2}\right)}{\theta^{i}\left(N_{i}-1\right)^{p+1 / 2}}=0 \text { for } i=0,1, \ldots, S \\
\sum_{i=0}^{S} \frac{1}{\theta^{i}\left(N_{i}-1\right)^{p-1 / 2}}=A_{S}
\end{gathered}
$$

from where

$$
N_{i}=1+\frac{\left(\theta^{-\frac{2(S+1)}{2 p+1}}-1\right)^{\frac{2}{2 p-1}}}{A_{S}^{\frac{2}{2 p-1}} \theta^{i} \frac{2}{2 p+1}}\left(\theta^{-\frac{2}{2 p+1}}-1\right)^{\frac{2}{2 p+1}}
$$

for $i=0,1, \ldots, S$. Now we can choose S for which the computing effort is minimum.
As an example, let us consider the equation (cf. [5])

$$
u^{\prime \prime}=\sin t-u^{3}(t)
$$

For $m=1, p=2, \theta=0.4, N_{0}=4, N_{1}=4, N_{2}=5, N_{3}=7, N_{4}=10, N_{5}=14$, $N_{6}=20$ and at every step the fixed point W was obtained by 64 evaluations of $N u \equiv \sin u-u^{3}$ (instead of 120 evaluations if at every step we choose $N=20$, for the same precision).

References

[1] Harder, A.M., Hicks, T.L., Stability results for fixed point iteration procedures, Math. Japonica, 33, 5, 1988, pp. 693-706.
[2] Sanchez, D.A., An iteration scheme for boundary value alternative problems, Rep. 1412, Jan., 1984, Univ. Wisconsin.
[3] Cesari, L., Functional analysis and Galerkin's method, Mich. Math.J., 11, 1984.
[4] Urabe, M., Galerkin procedure for nonlinear periodic systems, Arch. rat. mech. anal., 20, 2, 1965, pp. 120-152.
[5] Urabe, M., Reiter, A., Numerical computation of nonlinear forced oscillations by Galerkin's procedure, J. Math. Anal. Appl., 14, 1, 1966, pp. 107-140.

În cel de al XLIII-lea an (1998) STUDIA UNIVERSITATIS BABES-BOLYAI apare în următoarele serii:

```
matematică (trimestrial)
informatică (semestrial)
fizică (semestrial)
chimie (semestrial)
geologie (semestrial)
geografie (semestrial)
biologie (semestrial)
filosofie (semestrial)
sociologie (semestrial)
politică (anual)
efemeride (anual)
```

studii europene (semestrial)
business (semestrial)
psihologie-pedagogie (semestrial)
stiințe economice (semestrial)
stiințe juridice (semestrial)
istorie (trei aparitii pe an)
filologie (trimestrial)
teologie ortodoxă (semestrial)
teologie catolică (semestrial)
educație fizică (anual)

In the XLIII-rd year of its publication (1998) STUDIA UNIVERSITATIS BABESBOLYAI is issued in the following series:

```
mathematics (quarterly)
computer science (semesterily)
physics (semesterily)
chemistry (semesterily)
geology (semesterily)
geography (semesterily)
biology (semesterily)
philosophy (semesterily)
sociology (semesterily)
politics (yearly)
ephemerides (yearly)
```

European studies (semesterily) business (semesterily) psychology - pedagogy (semesterily) economic sciences (semesterily) juridical sciences (semesterily) history (three issues per year) philology (quarterly) orthodox theology (semesterily) catholic theology (semesterily) physical training (yearly)

Dans sa XLIII-ème année (1998) STUDIA UNIVERSITATIS BABESS-BOLYAI paraît dans les séries suivantes:
mathématiques (trimestriellement)
informatiques (semestriellement)
physique (semestriellement)
chimie (semestriellement)
géologie (semestriellement)
géographie (semestriellement)
biologie (semestriellement)
philosophie (semestriellement)
sociologie (semestriellement)
politique (annuellement)
éphémérides (annuellement)
études européennes (semestriellement) affaires (semestriellement) psychologie - pédagogie (semestriellement) études économiques (semestriellement) études juridiques (semestriellement) histoire (trois apparitions per année) philologie (trimestriellement) théologie orthodoxe (semestriellement) théologie catholique (semestriellement) éducation physique (annuellement)

[^0]: 1991 Mathematics Subject Classification. 47H10, 65J15.

