ON AN INTEGRAL OPERATOR

VIRGIL PESCAR

Abstract. In this paper we investigate the conditions of univalence for the analicity and univalence in the unit disc of the integral $\int_0^z \left[\frac{g(u)}{u}\right]^{\gamma} du$.

1. INTRODUCTION

Let A be the class of the functions f which are analytic in the unit disc $U = \{z \in C; |z| < 1\}$ and f(0) = f'(0) - 1 = 0

We denote by S the class of the function $f \in A$ which are univalent in U.

The integral operators which transform the class S into S are prezented in the theorems A and B, which follow.

THEOREM A [2]. If the function f belongs to the class S then for any complex number γ , $|\gamma| \leq \frac{1}{4}$ the function

$$F_{\gamma}(z) = \int_{0}^{z} \left[\frac{f(\xi)}{\xi} \right]^{\gamma} d\xi \tag{1}$$

is in S.

THEOREM B[4]. Let α, β, γ be complex numbers and $h(z) = z + a_2 z^2 + \ldots$ a regular and univalent function in U. If

(i)
$$\operatorname{Re}\beta \geq \operatorname{Re}\alpha > 0$$

and

(ii)
$$|\gamma| \leq \frac{Re\alpha}{2}$$
 for $Re\alpha \in (0, \frac{1}{2})$

 \mathbf{or}

$$|\gamma| \leq \frac{1}{4}$$
 for $Re\alpha \in \left[\frac{1}{2}, \infty\right)$.

then the function

$$G_{\beta,\gamma}(z) = \left[\beta \int_0^z u^{\beta-1} \left(\frac{h(u)}{u}\right)^{\gamma} du\right]^{\frac{1}{\beta}} \tag{2}$$

belongs to the class S.

2. PRELIMINARIES

We will need the following theorem and lemma for proving our main result. **THEOREM** C [3].Let α be a complex number, $Re\alpha > 0$ and $f(z) = z + a_2 z^2 + \cdots$ be a regular function in U. If

$$\frac{1-|z|^{2Re\alpha}}{Re\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1 \tag{3}$$

for all $z \in U$, then for any complex number $\beta, Re\beta \geq Re\alpha$ the function

$$F_{\beta}(z) = \left[\beta \int_0^z u^{\beta-1} f'(u) du\right]^{\frac{1}{\beta}} \tag{4}$$

is in the class S.

LEMMA SCHWARZ [1]. If the function g is regular in U, g(0) = 0 and $|g(z)| \le 1$ for all $z \in U$, then the following inequalities hold

$$|g(z)| \le |z| \tag{5}$$

for all $z \in U$, and $|g'(0)| \le 1$, the equalities (in inequality (5) for $z \ne 0$) hold only in the case $g(z) = \epsilon z$, where $|\epsilon| = 1$.

3. MAIN RESULT

THEOREM 1. Let α, γ be complex numbers, $\text{Re}\alpha = a > 0$ and the function $h \in S$, $h(z) = z + a_2 z^2 + \dots$ If

$$\left| \frac{zh'(z)}{h(z)} - 1 \right| \le 1 \tag{6}$$

for all $z \in U$ and

$$|\gamma| \le \frac{(2a+1)^{\frac{(2a+1)}{2a}}}{2},\tag{7}$$

then for any complex number β , Re $\beta \geq a$ the function

$$G_{\beta,\gamma}(z) = \left[\beta \int_0^z \left(\frac{h(u)}{u}\right)^{\gamma} du\right]^{\frac{1}{\beta}} \tag{8}$$

is in the class S.

Proof. Let us consider the function

$$f(z) = \int_0^z \left[\frac{h(u)}{u} \right]^{\gamma} du. \tag{9}$$

The function

$$p(z) = \frac{1}{\gamma} \frac{z \dot{f}''(z)}{f'(z)} \tag{10}$$

where the constant γ satisfies the inequality (7) is regular in U. From (10) and (9) it follows that

$$p(z) = \frac{\gamma}{|\gamma|} \left[\frac{zh'(z)}{h(z)} - 1 \right]. \tag{11}$$

Using (11) and (6) we obtain

$$|p(z)| \le 1\tag{12}$$

for all $z \in U$. From (11) we have p(0) = 0 and applying Schwarz-Lemma we obtain

$$\frac{1}{|\gamma|} \left| \frac{zf''(z)}{f'(z)} \right| \le |z| \tag{13}$$

for all $z \in U$, and hence, we have

$$\frac{1 - |z|^{2a}}{a} \left| \frac{zf''(z)}{f'(z)} \right| \le |\gamma| \frac{1 - |z|^{2a}}{a} |z|. \tag{14}$$

Because $\max_{|z| \le 1} \frac{1 - |z|^{2a}}{a} |z| = \frac{2}{(2a+1)^{\frac{2a+1}{2a}}}$, from (14) and (7) we obtain

$$\frac{1-|z|^{2a}}{a}\left|\frac{zf''(z)}{f'(z)}\right| \le 1\tag{15}$$

for all $z \in U$. From (15), (9) and Theorem C it follows that $G_{\beta,\gamma}$ is in the class S. \square

References

- G.M. Goluzin, Gheometriceskaia teoria funktii Kompleksnogo peremennogo, ed. a II-a, Nauka, Moscova, 1966.
- [2] Y.J. Kim, E.P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math. J., Vol. 12, No. 2, December 1972,249-253.
- [3] N.N. Pascu, An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Braşov, (1987), 43-48.
- [4] N.N. Pascu, V. Pescar, On the integral operators of Kim-Merkes and Pfaltzgraff, Studia (Mathematica), Univ. Babeş-Bolyai, Cluj-Napoca, 32, 2(1990), 185-192.

"Transilvania" University of Braşov, Faculty of Science, Department of Mathematics, 2200 Braşov, Romania

