ON CERTAIN NEW CONDITIONS FOR STARLIKENESS AND STRONGLY-STARLIKENESS

GHEORGHE OROS

Abstract. In this paper we will obtain conditions for starlikeness and strongly-starlikeness starting from the differential subordination of the form:

$$
\begin{gathered}
\alpha z p^{\prime}(z)+p^{2}(z) \prec h(z), \text { where } \alpha \geq 0, \\
h(z)=\alpha n z q^{\prime}(z)+q^{2}(z),
\end{gathered}
$$

and q is a convex function in the unit $\operatorname{disc} U$, with $q(0)=1$ and $\operatorname{Re} q(z)>0$, $n \geq 1$. We will obtain our results by using the differential subordination method developed in [1], [2], [3].

1. Introduction and preliminaries

Let A_{n} denote the class of function of the form:

$$
f(z)=z+a_{n+1} z^{n+1}+a_{n+2} a^{n+2}+\ldots
$$

which are analytic in the unit disc $U=\{z| | z \mid<1\}$ and let $A=A_{1}$.
We let $\mathcal{H}[a, n]$ denote the class of analytic functions in U of the form:

$$
f(z)=z+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots, \quad z \in U
$$

and let

$$
S^{*}=\left\{f \in A, \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in U\right\}
$$

be the class of starlike functions in the unit disc U.
For $\lambda \in(0,1]$ let

$$
S^{*}[\lambda]=\left\{f \in A\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\lambda \frac{\pi}{2}, z \in U\right\}
$$

denote the class of strongly-starlike functions.

We will need the following notions and lemmas to prove our main results.
If f and F are analytic functions in U, then we say that f is subordinate to F, written $f \prec F$ or $f(z) \prec F(z)$, if there is a function w analytic in U with $w(0)=0$ and $|w(z)|<1$, for $z \in U$ and if $f(z)=F(w(z)), z \in U$. If F is univalent then $f \prec F$ if and only if $f(0)=F(0)$ and $f(U) \subset F(U)$.
Lemma \mathbf{A} ([1], [2], [3]). Let q be univalent in \bar{U} with $q^{\prime}(\zeta) \neq 0,|\zeta|=1, q(0)=a$ and let $p(z)=a+p_{n} z+\ldots$ be analytic in $U, p(z) \neq a$ and $n \geq 1$.

If $p \nprec q$ then there exist $z_{0} \in U, \zeta_{0} \in \partial U$ and $m \geq n$ such that:
(i) $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$
(ii) $z_{0}\left(p^{\prime}\left(z_{0}\right)=m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)\right.$.

The function $L(z, t), z \in U, t \geq 0$ is a subordination chain if $L(z, t)=$ $a_{1}(t) z+a_{2}(t) z^{2}+\ldots$ is analytic and univalent in U for any $t \geq 0$ and if $L\left(z, t_{1}\right) \prec$ $L\left(z, t_{2}\right)$ where $0 \leq t_{1} \leq t_{2}$.
Lemma B ([7]). The function $L(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\ldots$, with $a_{1}(t) \neq 0$ for $t \geq 0$ and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$ is a subordination chain if and only if there are the constants $r \in(0,1]$ and $M>0$ such that:
(i) $L(z, t)$ is analytic in $|z|<r$ for any $t \geq 0$, locally absolute continuous in $t \geq 0$ for every $|z|<r$ and satisfies $|L(z, t)| \leq M\left|a_{1}(t)\right|$ for $|z|<r$ and $t \geq 0$.
(ii) There is a function $p(z, t)$ analytic in U for any $t \geq 0$ measurable in $[0, \infty)$ for any $z \in U$ with $\operatorname{Re} p(z, t)>0$ for $z \in U, t \geq 0$ so that

$$
\frac{\partial L(z, t)}{\partial t}=z \frac{\partial L(z, t)}{\partial z} p(z, t) \text { for }|z|<r
$$

and for almost any $t \geq 0$.

2. Main results

Theorem 1. Let $\alpha \geq 0$ and let q be a convex function in the unit disc U, with $q(0)=1, \operatorname{Re} q(z)>0$ and let

$$
\begin{equation*}
h(z)=\alpha n z q^{\prime}(z)+q^{2}(z) \tag{1}
\end{equation*}
$$

where n is a positive integer.

If $p \in \mathcal{H}[1, n]$, satisfies the condition:

$$
\begin{equation*}
\alpha z p^{\prime}(z)+p^{2}(z) \prec h(z) \tag{2}
\end{equation*}
$$

where h is given by (1) then $p(z) \prec q(z)$, and q is the best dominant.

Proof. Let

$$
\begin{equation*}
L(z, t)=\alpha(n+t) z q^{\prime}(z)+q^{2}(z)=\psi\left(q(z),(n+t) z q^{\prime}(z)\right) . \tag{3}
\end{equation*}
$$

If $t=0$ we have

$$
L(z, 0)=\alpha n z q^{\prime}(z)+q^{2}(z)=h(z) .
$$

We will show that condition (2) implies $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

From (3) we easily deduce:

$$
\frac{\frac{z \partial L(z, t)}{\partial z}}{\frac{\partial L(z, t)}{\partial t}}=(n+t)\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right]+\frac{2}{\alpha} q(z)
$$

and by using the convexity of q and condition $\operatorname{Re} q(z)>0$, from Theorem 1 we obtain:

$$
\operatorname{Re} \frac{\frac{z \partial L(z, t)}{\partial z}}{\frac{\partial L(z, t)}{\partial t}}>0 .
$$

Hence by Lemma B we deduce that $L(z, t)$ is a subordination chain. In particular, the function $h(z)=L(z, 0)$ is univalent and $h(z) \prec L(z, 0)$, for $t \geq 0$.

If we suppose that $p(z)$ is not subordinate to $q(z)$, then, from Lemma A , there exist $z_{0} \in U$, and $\zeta_{0} \in \partial U$ such that $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$ with $\left|\zeta_{0}\right|=1$, and $z_{0} p^{\prime}\left(z_{0}\right)=$ $(n+t) \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$, with $t \geq 0$.

Hence

$$
\psi_{0}=\psi\left(p\left(z_{0}\right), z_{0} p^{\prime}\left(z_{0}\right)\right)=\psi\left(q\left(\zeta_{0}\right),(n+t) \zeta_{0} q^{\prime}\left(\zeta_{0}\right)\right)=L\left(\zeta_{0}, t\right), t \geq 0
$$

Since $h\left(z_{0}\right)=L\left(z_{0}, 0\right)$, we deduce that $\psi_{0} \notin h(U)$, which contradicts condition (2). Therefore, we have $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

If we let $p(z)=\frac{z f^{\prime}(z)}{f(z)}$,(where $f \in A_{n}$), then Theorem 1 can be written in the following equivalent form:

Theorem 2. Let $\alpha \geq 0, q$ be a convex function in the unit disc U, with $q(0)=1$, $\operatorname{Re} q(z)>0, n \geq 1$.

If $f \in A_{n}$, with $\frac{f(z)}{z} \neq 0, z \in U$, satisfies the condition

$$
\frac{z f^{\prime}(z)}{f(z)} J(\alpha, f ; z) \prec h(z),
$$

where h is given by (1) then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z)
$$

and q is the best dominant.
In the case $\alpha=1$ this result was obtained in [4].

3. Particular cases

1) If we let $q(z)=1+z$, then

$$
h(z)=1+(\alpha n+2) z+z^{2}, \quad n \geq 1
$$

and Theorem 1 can be written as:
Theorem 3. Let $\alpha \geq 0$, and let n be a positive integer.
If $p \in \mathcal{H}[1, n]$, satisfies the condition:

$$
\alpha z p^{\prime}(z)+p^{2}(z) \prec 1+(\alpha n+2) z+z^{2}
$$

then

$$
p(z) \prec 1+z
$$

and this result is sharp.
In this case Theorem 2 becomes:
Theorem 4. Let $\alpha \geq 0$, and let n be a positive integer.
If $f \in A_{n}$, with $\frac{f(z)}{z} \neq 0$, satisfies the condition

$$
\frac{z f^{\prime}(z)}{f(z)} J(\alpha, f ; z) \prec 1+(\alpha n+2) z+z^{2}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+z
$$

and this result is sharp.
2) If we let $q(z)=\frac{1+z}{1-z}$, then

$$
h(z)=\frac{1+2(1+\alpha n) z+z^{2}}{(1-z)^{2}}
$$

and Theorem 1 becomes:
Theorem 5. Let $\alpha \geq 0$ and let n be a positive integer.
If $p \in \mathcal{H}[1, n]$, satisfies the condition

$$
\alpha z p^{\prime}(z)+p^{2}(z) \prec \frac{1+2(1+\alpha n) z+z^{2}}{(1-z)^{2}},
$$

then

$$
p(z) \prec \frac{1+z}{1-z}
$$

and this result is sharp.
Theorem 2 becomes the following criterion for starlikeness:
Theorem 6. Let $\alpha \geq 0$, and let n be a positive integer.
If $f \in A_{n}$, with $\frac{f(z)}{z} \neq 0$, satisfies the condition

$$
\frac{z f^{\prime}(z)}{f(z)} J(\alpha, f ; z) \prec \frac{1+2(1+\alpha n) z+z^{2}}{(1-z)^{2}}
$$

then $f \in S^{*}$.
3) If we let $q(z)=\left(\frac{1+z}{1-z}\right)^{\lambda}$, where $0<\lambda<1$, then

$$
h(z)=\left(\frac{1+z}{1-z}\right)^{\lambda}\left[\frac{2 \alpha n \lambda z}{1-z^{2}}+\left(\frac{1+z}{1-z}\right)^{\lambda}\right]
$$

and Theorem 1 becomes:
Theorem 7. Let $\alpha \geq 0,0<\lambda<1$, let n be a positive integer and let
$h(z)=\left(\frac{1+z}{1-z}\right)^{\lambda}\left[\frac{2 \alpha n \lambda z}{1-z^{2}}+\left(\frac{1+z}{1-z}\right)^{\lambda}\right]=\left(\frac{1+z}{1-z}\right)^{\lambda-1}\left[\frac{2 \alpha n \lambda z}{(1-z)^{2}}+\left(\frac{1+z}{1-z}\right)^{\lambda+1}\right]$.

If $p \in \mathcal{H}[1, n]$, satisfies the condition:

$$
\alpha z p^{\prime}(z)+p^{2}(z) \prec h(z),
$$

where h is given by (4), then

$$
p(z) \prec\left(\frac{1+z}{1-z}\right)^{\lambda}
$$

and this result is sharp.
From Theorem 2 we deduce the following criterion for strongly-starlikeness.
Theorem 8. Let $\alpha \geq 0,0<\lambda<1$, and let n be a positive integer.
If $f \in A_{n}$, with $\frac{f(z)}{z} \neq 0$, satisfies the condition

$$
\frac{z f^{\prime}(z)}{f(z)} J(\alpha, f ; z) \prec h(z)
$$

where h is given by (4), then

$$
f \in S^{*}[\lambda] .
$$

By choosing certain subdomains of $h(U)$ we can deduce the following particular criteria for strongly-starlikeness.
Corollary 1. Let $0<\lambda<1, n \geq 1, \alpha \geq 0$.
If $f \in A_{n}$, with $\frac{f(z)}{z} \neq 0$, satisfies the condition

$$
\begin{equation*}
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)} J(\alpha, f ; z)\right\}\right|<\phi_{0}(n, \alpha, \lambda) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{0}(n, \alpha, \lambda)=\frac{\lambda \pi}{2}+\arctan \frac{\frac{n \alpha \lambda}{1-\lambda}+\left(\frac{1+\lambda}{1-\lambda}\right)^{\frac{1+\lambda}{2}} \sin \frac{\lambda \pi}{2}}{\left(\frac{1+\lambda}{1-\lambda}\right)^{\frac{1+\lambda}{2}} \cos \frac{\lambda \pi}{2}} \tag{6}
\end{equation*}
$$

then $f \in S^{*}[\lambda]$.
Proof. The domain $h(U)$, where h is given by (4) is symmetric with respect to the real axis. Therefore, if $z=e^{i \theta}$, then in order to obtain the boundary of $h(U)$ it is sufficient to suppose $0 \leq \theta \leq \pi$.

Letting $\cot \frac{\theta}{2}=t$ and $h\left(e^{i \theta}\right)=u+i v$, we find:

$$
\left\{\begin{array}{l}
u(t)=t^{\lambda}\left[-\frac{\alpha n \lambda a}{2 t}\left(1+t^{2}\right)+\left(b^{2}-a^{2}\right) t^{\lambda}\right] \tag{7}\\
v(t)=t^{\lambda}\left[\frac{\alpha n \lambda b}{2 t}\left(1+t^{2}\right)+2 a b t^{2}\right]
\end{array}\right.
$$

where $a=\sin \frac{\lambda \pi}{2}$ and $b=\cos \frac{\lambda \pi}{2}$.

We also have:

$$
\begin{equation*}
\phi=\phi(t)=\arg h\left(e^{i \theta}\right)=\frac{\lambda \pi}{2}+\arctan \frac{\frac{\alpha n \lambda}{2}\left(1+t^{2}\right)+t^{\lambda+1} \sin \frac{\lambda \pi}{2}}{t^{\lambda+1} \cos \frac{\lambda \pi}{2}} . \tag{8}
\end{equation*}
$$

From (8) it is easy to show that the equation $\phi^{\prime}(t)=0$, has the root:

$$
t_{0}=\sqrt{\frac{1+\lambda}{1-\lambda}}
$$

and

$$
\min _{t \geq 0} \phi(t)=\phi\left(t_{0}\right)=\phi_{0}(n, \lambda)
$$

where $\phi_{0}(n, \lambda)$ is given by (6).
We deduce that the sector $\left\{w:|\arg w|<\phi_{0}(n, \alpha, \lambda\}\right.$ is the largest sector which lies in $h(U)$. Hence (5) implies

$$
\frac{z f^{\prime}(z)}{f(z)} J(\alpha, f ; z) \prec h(z)
$$

where h is given by (4) and Corollary 1 follows from Theorem 2.
Corollary 2. Let $0<\lambda<1, n \geq 1, \alpha \geq 0$.
If $f \in A_{n}$, with $\frac{f(z)}{z} \neq 0$, satisfies the condition

$$
\begin{equation*}
\left|\operatorname{Im} \frac{z f^{\prime}(z)}{f(z)} J(\alpha, f ; z)\right|<V(n, \alpha, \lambda) \tag{9}
\end{equation*}
$$

where $V(n, \alpha, \lambda)=v\left(t_{0}\right)$, with v given by (7) and t_{0} is the root of the equation:

$$
\begin{equation*}
4 t^{\lambda+1} \sin \lambda \pi+\alpha n(\lambda+1) t^{2} \cos \frac{\lambda \pi}{2}+\alpha n(\lambda-1) \cos \frac{\lambda \pi}{2}=0 \tag{10}
\end{equation*}
$$

then $f \in S^{*}[\lambda]$.
Proof. From (7) we deduce:

$$
v^{\prime}=\lambda t^{\lambda-2}\left[\frac{\alpha n(\lambda-1) b}{2}+\frac{\alpha n(\lambda+1) b}{2} t^{2}+4 a b t^{\lambda+1}\right]
$$

and the equation $v^{\prime}(t)=0$ becomes (10).
Hence

$$
V(n, \alpha, \lambda)=v\left(t_{0}\right)=\min _{t \geq 0} v(t)
$$

and we deduce that the strip $|v|<V(n, \alpha, \lambda)$ lies in $h(U)$. Therefore (9) implies

$$
\frac{z f^{\prime}(z)}{f(z)} J(\alpha, f ; z) \prec h(z)
$$

and Corollary 2 follows from Thereom 2.
Corollary 3. Let $0<\lambda<1, n \geq 1, \alpha \geq 0$.
If $f \in A_{n}$, with $\frac{f(z)}{z} \neq 0, z \in U$, satisfies the condition:

$$
\begin{equation*}
\operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)} J(\alpha, f ; z)\right]>U(n, \alpha, \lambda) \tag{11}
\end{equation*}
$$

where $U(n, \alpha, \lambda)=u\left(t_{0}\right)$, with u given by (7) and t_{0} is the root of the equation:

$$
\begin{equation*}
4 t^{\lambda+1} \cos \lambda \pi-n \alpha(\lambda+1) t^{2} \cos \frac{\lambda \pi}{2}-n \alpha(\lambda-1) \sin \frac{\lambda \pi}{2}=0 \tag{12}
\end{equation*}
$$

then $f \in S^{*}[\lambda]$.
Proof. From (7) we deduce:

$$
u^{\prime}=\lambda t^{\lambda-2}\left[-\frac{\alpha n a(\lambda-1)}{2}-\frac{\alpha n a(\lambda+1)}{2} t^{2}+2\left(b^{2}-a^{2}\right) t^{\lambda+1}\right]
$$

and the equation $u^{\prime}(t)=0$ becomes (10).
Hence

$$
U(n, \lambda)=u\left(t_{0}\right)=\max _{t \geq 0} u(t)
$$

and we deduce that the half-plane $\{w: \operatorname{Re} w>U(n, \alpha, \lambda)\}$ lies in $h(U)$. Therefore (11) implies

$$
\frac{z f^{\prime}(z)}{f(z)} J(\alpha, f ; z) \prec h(z)
$$

and Corollary 3 follows from Theorem 2.

4. Examples

1) If we let $n=1, \alpha=\frac{1}{2}, \lambda=\frac{1}{2}$, then from (6) we deduce

$$
\phi_{0}\left(1, \frac{1}{2}, \frac{1}{2}\right)=\frac{\pi}{4}+\operatorname{arctg}\left(1+\frac{1}{3^{\frac{3}{4}} \sqrt{2}}\right)=1.7027 \ldots
$$

and by Corollary 1 we have the following result:
If $f \in A$, with $\frac{f(z)}{z} \neq 0, z \in U$ and:

$$
\left|\arg \left[\frac{z f^{\prime}(z)}{f(z)}\left(\frac{z f^{\prime}(z)}{f(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]\right|<1.7027 \ldots
$$

then $f \in S^{*}\left[\frac{1}{2}\right]$, i.e.

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi}{4}
$$

2) If we let $n=2, \alpha=\frac{1}{2}, \lambda=\frac{1}{2}$, then from (6) we deduce

$$
\phi_{0}\left(2, \frac{1}{2}, \frac{1}{2}\right)=\frac{\pi}{4}+\operatorname{arctg}\left(1+\frac{\sqrt{2}}{3^{\frac{3}{4}}}\right)=1.863 \ldots
$$

and by Corollary 1 we have the following result:
If $f \in A_{2}$, with $\frac{f(z)}{z} \neq 0, z \in U$ and:

$$
\left|\arg \left[\frac{z f^{\prime}(z)}{f(z)}\left(\frac{z f^{\prime}(z)}{f(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]\right|<1.863 \ldots
$$

then $f \in S^{*}\left[\frac{1}{2}\right]$, i.e.

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi}{4}
$$

3) If we let $n=2, \alpha=\frac{1}{2}, \lambda=\frac{2}{3}$, then from (6) we deduce

$$
\phi_{0}\left(2, \frac{1}{2}, \frac{2}{3}\right)=\frac{\pi}{3}+\operatorname{arctg} \frac{2+5^{\frac{5}{6}} \cdot \frac{\sqrt{3}}{2}}{5^{\frac{5}{6}} \cdot \frac{1}{2}}=2.2725 \ldots
$$

and by Corollary 1 we have the following result:
If $f \in A_{2}$, with $\frac{f(z)}{z} \neq 0, z \in U$ and:

$$
\left|\arg \left[\frac{z f^{\prime}(z)}{f(z)}\left(\frac{z f^{\prime}(z)}{f(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]\right|<2.2725 \ldots
$$

then $f \in S^{*}\left[\frac{2}{3}\right]$ i.e.

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi}{3}
$$

4) If we let $n=2, \alpha=\frac{1}{2}, \lambda=\frac{1}{3}$, then from (6) we deduce

$$
\phi_{0}\left(2, \frac{1}{2}, \frac{1}{3}\right)=\frac{\pi}{6}+\operatorname{arctg} \frac{1+2^{\frac{2}{3}}}{2^{\frac{2}{3}} \cdot \sqrt{3}}=1.2792 \ldots
$$

and by Corollary 1 we have the following result:
If $f \in A_{2}$, with $\frac{f(z)}{z} \neq 0, z \in U$ and

$$
\left|\arg \left[\frac{z f^{\prime}(z)}{f(z)}\left(\frac{z f^{\prime}(z)}{f(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]\right|<1.2792 \ldots
$$

then $f \in S^{*}\left[\frac{1}{3}\right]$ i.e.

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi}{6}
$$

5) If we let $n=2, \alpha=\frac{1}{2}, \lambda=\frac{1}{3}$, then equation (10) becomes:

$$
16 t^{\frac{3}{2}}+3 \sqrt{2} t^{2}-\sqrt{2}=0
$$

which has the root $t_{0}=0.1846 \ldots$ Hence by Corollary 2 we deduce the following result:

If $f \in A_{2}$, with $\frac{f(z)}{z} \neq 0, z \in U$ and:

$$
\left|\operatorname{Im}\left[\frac{z f^{\prime}(z)}{f(z)}\left(\frac{z f^{\prime}(z)}{f(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]\right|<1.220 \ldots
$$

then $f \in S^{*}\left[\frac{1}{2}\right]$.
6) If we let $n=2, \alpha=\frac{1}{2}, \lambda=\frac{1}{2}$, then equation (12) becomes: $3 t^{2}-1=0$ and from Corollary 3 we deduce the following result:

If $f \in A_{2}$, with $\frac{f(z)}{z} \neq 0, z \in U$, and:

$$
\left|\operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\left(\frac{z f^{\prime}(z)}{f(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]\right|>-0.610 \ldots
$$

then $f \in S^{*}\left[\frac{1}{2}\right]$.

References

[1] S.S. Miller and P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
[2] S.S. Miller and P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. I., 28(1981), 157-171.
[3] S.S. Miller and P.T. Mocanu, The theory and applications of second order differential subordinations, Studia Univ. Babeş-Bolyai, Math., 34, 4(1989), 3-33.
[4] P.T. Mocanu and Gh. Oros, Certain sufficient conditions for strongly-starlikeness, (to appear).
[5] Ch. Pommerenke, Univalent Function, Vandenhoeck Ruprecht in Götingen, 1975.
University of Oradea, Department of Mathematics, 3700 Oradea, Roma-

