ON CERTAIN NEW CONDITIONS FOR STARLIKENESS AND STRONGLY-STARLIKENESS

GHEORGHE OROS

Abstract. In this paper we will obtain conditions for starlikeness and strongly-starlikeness starting from the differential subordination of the form:

$$lpha z p'(z) + p^2(z) \prec h(z), ext{ where } lpha \geq 0,$$

 $h(z) = lpha n z q'(z) + q^2(z),$

and q is a convex function in the unit disc U, with q(0) = 1 and Re q(z) > 0, $n \ge 1$. We will obtain our results by using the differential subordination method developed in [1], [2], [3].

1. Introduction and preliminaries

Let A_n denote the class of function of the form:

$$f(z) = z + a_{n+1}z^{n+1} + a_{n+2}a^{n+2} + \ldots,$$

which are analytic in the unit disc $U = \{z \mid |z| < 1\}$ and let $A = A_1$.

We let $\mathcal{H}[a, n]$ denote the class of analytic functions in U of the form:

$$f(z) = z + a_n z^n + a_{n+1} z^{n+1} + \dots, \quad z \in U$$

and let

$$S^* = \left\{ f \in A, \text{ Re } \frac{zf'(z)}{f(z)} > 0, \ z \in U \right\}$$

be the class of starlike functions in the unit disc U.

For $\lambda \in (0, 1]$ let

$$S^*[\lambda] = \left\{ f \in A | \left| \arg \frac{zf'(z)}{f(z)} \right| < \lambda \frac{\pi}{2}, \ z \in U \right\}$$

denote the class of strongly-starlike functions.

We will need the following notions and lemmas to prove our main results.

If f and F are analytic functions in U, then we say that f is subordinate to F, written $f \prec F$ or $f(z) \prec F(z)$, if there is a function w analytic in U with w(0) = 0and |w(z)| < 1, for $z \in U$ and if f(z) = F(w(z)), $z \in U$. If F is univalent then $f \prec F$ if and only if f(0) = F(0) and $f(U) \subset F(U)$.

Lemma A ([1], [2], [3]). Let q be univalent in \overline{U} with $q'(\zeta) \neq 0$, $|\zeta| = 1$, q(0) = aand let $p(z) = a + p_n z + \ldots$ be analytic in U, $p(z) \neq a$ and $n \geq 1$.

- If $p \not\prec q$ then there exist $z_0 \in U$, $\zeta_0 \in \partial U$ and $m \geq n$ such that:
- (*i*) $p(z_0) = q(\zeta_0)$
- (ii) $z_0(p'(z_0) = m\zeta_0 q'(\zeta_0).$

The function L(z,t), $z \in U$, $t \ge 0$ is a subordination chain if $L(z,t) = a_1(t)z + a_2(t)z^2 + \ldots$ is analytic and univalent in U for any $t \ge 0$ and if $L(z,t_1) \prec L(z,t_2)$ where $0 \le t_1 \le t_2$.

Lemma B ([7]). The function $L(z,t) = a_1(t)z + a_2(t)z^2 + ...,$ with $a_1(t) \neq 0$ for $t \geq 0$ and $\lim_{t\to\infty} |a_1(t)| = \infty$ is a subordination chain if and only if there are the constants $r \in (0,1]$ and M > 0 such that:

(i) L(z,t) is analytic in |z| < r for any $t \ge 0$, locally absolute continuous in $t \ge 0$ for every |z| < r and satisfies $|L(z,t)| \le M|a_1(t)|$ for |z| < r and $t \ge 0$.

(ii) There is a function p(z,t) analytic in U for any $t \ge 0$ measurable in $[0,\infty)$ for any $z \in U$ with Re p(z,t) > 0 for $z \in U$, $t \ge 0$ so that

$$\frac{\partial L(z,t)}{\partial t} = z \frac{\partial L(z,t)}{\partial z} p(z,t) \text{ for } |z| < r$$

and for almost any $t \geq 0$.

2. Main results

Theorem 1. Let $\alpha \ge 0$ and let q be a convex function in the unit disc U, with q(0) = 1, Re q(z) > 0 and let

$$h(z) = \alpha n z q'(z) + q^2(z), \qquad (1)$$

where n is a positive integer.

If $p \in \mathcal{H}[1, n]$, satisfies the condition:

$$\alpha z p'(z) + p^2(z) \prec h(z) \tag{2}$$

where h is given by (1) then $p(z) \prec q(z)$, and q is the best dominant.

Proof. Let

$$L(z,t) = \alpha(n+t)zq'(z) + q^{2}(z) = \psi(q(z), (n+t)zq'(z)).$$
(3)

If t = 0 we have

$$L(z,0) = \alpha n z q'(z) + q^2(z) = h(z).$$

We will show that condition (2) implies $p(z) \prec q(z)$ and q(z) is the best dominant.

From (3) we easily deduce:

$$\frac{\frac{z\partial L(z,t)}{\partial z}}{\frac{\partial L(z,t)}{\partial t}} = (n+t)\left[1 + \frac{zq''(z)}{q'(z)}\right] + \frac{2}{\alpha}q(z)$$

and by using the convexity of q and condition Re q(z) > 0, from Theorem 1 we obtain:

$$\operatorname{Re} \ \frac{\frac{z \partial L(z,t)}{\partial z}}{\frac{\partial L(z,t)}{\partial t}} > 0.$$

Hence by Lemma B we deduce that L(z,t) is a subordination chain. In particular, the function h(z) = L(z,0) is univalent and $h(z) \prec L(z,0)$, for $t \ge 0$.

If we suppose that p(z) is not subordinate to q(z), then, from Lemma A, there exist $z_0 \in U$, and $\zeta_0 \in \partial U$ such that $p(z_0) = q(\zeta_0)$ with $|\zeta_0| = 1$, and $z_0 p'(z_0) = (n+t)\zeta_0 q'(\zeta_0)$, with $t \ge 0$.

Hence

$$\psi_0 = \psi(p(z_0), z_0 p'(z_0)) = \psi(q(\zeta_0), (n+t)\zeta_0 q'(\zeta_0)) = L(\zeta_0, t), \ t \ge 0.$$

Since $h(z_0) = L(z_0, 0)$, we deduce that $\psi_0 \notin h(U)$, which contradicts condition (2). Therefore, we have $p(z) \prec q(z)$ and q(z) is the best dominant.

If we let $p(z) = \frac{zf'(z)}{f(z)}$, (where $f \in A_n$), then Theorem 1 can be written in the following equivalent form:

Theorem 2. Let $\alpha \ge 0$, q be a convex function in the unit disc U, with q(0) = 1, Re q(z) > 0, $n \ge 1$.

If $f \in A_n$, with $\frac{f(z)}{z} \neq 0$, $z \in U$, satisfies the condition

$$\frac{zf'(z)}{f(z)}J(\alpha,f;z)\prec h(z),$$

where h is given by (1) then

$$\frac{zf'(z)}{f(z)} \prec q(z)$$

and q is the best dominant.

In the case $\alpha = 1$ this result was obtained in [4].

3. Particular cases

1) If we let q(z) = 1 + z, then

$$h(z) = 1 + (\alpha n + 2)z + z^2, \quad n \ge 1$$

and Theorem 1 can be written as:

Theorem 3. Let $\alpha \geq 0$, and let n be a positive integer.

If $p \in \mathcal{H}[1, n]$, satisfies the condition:

$$\alpha z p'(z) + p^2(z) \prec 1 + (\alpha n + 2)z + z^2,$$

then

$$p(z) \prec 1 + z$$

and this result is sharp.

In this case Theorem 2 becomes:

Theorem 4. Let $\alpha \geq 0$, and let n be a positive integer.

If
$$f \in A_n$$
, with $\frac{f(z)}{z} \neq 0$, satisfies the condition
$$\frac{zf'(z)}{f(z)}J(\alpha, f; z) \prec 1 + (\alpha n + 2)z + z^2$$

then

$$\frac{zf'(z)}{f(z)} \prec 1+z,$$

and this result is sharp.

2) If we let $q(z) = \frac{1+z}{1-z}$, then

$$h(z) = \frac{1 + 2(1 + \alpha n)z + z^2}{(1 - z)^2}$$

and Theorem 1 becomes:

Theorem 5. Let $\alpha \ge 0$ and let n be a positive integer.

If $p \in \mathcal{H}[1, n]$, satisfies the condition

$$\alpha z p'(z) + p^2(z) \prec \frac{1 + 2(1 + \alpha n)z + z^2}{(1 - z)^2},$$

then

$$p(z) \prec \frac{1+z}{1-z}$$

and this result is sharp.

Theorem 2 becomes the following criterion for starlikeness:

Theorem 6. Let $\alpha \geq 0$, and let n be a positive integer.

If $f \in A_n$, with $\frac{f(z)}{z} \neq 0$, satisfies the condition

$$\frac{zf'(z)}{f(z)}J(\alpha, f; z) \prec \frac{1 + 2(1 + \alpha n)z + z^2}{(1 - z)^2}$$

then $f \in S^*$.

3) If we let
$$q(z) = \left(\frac{1+z}{1-z}\right)^{\lambda}$$
, where $0 < \lambda < 1$, then

$$h(z) = \left(\frac{1+z}{1-z}\right)^{\lambda} \left[\frac{2\alpha n\lambda z}{1-z^2} + \left(\frac{1+z}{1-z}\right)^{\lambda}\right]$$

and Theorem 1 becomes:

Theorem 7. Let $\alpha \geq 0$, $0 < \lambda < 1$, let n be a positive integer and let

$$h(z) = \left(\frac{1+z}{1-z}\right)^{\lambda} \left[\frac{2\alpha n\lambda z}{1-z^2} + \left(\frac{1+z}{1-z}\right)^{\lambda}\right] = \left(\frac{1+z}{1-z}\right)^{\lambda-1} \left[\frac{2\alpha n\lambda z}{(1-z)^2} + \left(\frac{1+z}{1-z}\right)^{\lambda+1}\right].$$
(4)

If $p \in \mathcal{H}[1, n]$, satisfies the condition:

$$\alpha z p'(z) + p^2(z) \prec h(z),$$

where h is given by (4), then

$$p(z) \prec \left(\frac{1+z}{1-z}\right)^{\lambda}$$

and this result is sharp.

From Theorem 2 we deduce the following criterion for strongly-starlikeness. Theorem 8. Let $\alpha \ge 0$, $0 < \lambda < 1$, and let n be a positive integer.

If $f \in A_n$, with $\frac{f(z)}{z} \neq 0$, satisfies the condition

$$\frac{zf'(z)}{f(z)}J(\alpha,f;z)\prec h(z)$$

where h is given by (4), then

$$f \in S^*[\lambda]$$

By choosing certain subdomains of h(U) we can deduce the following particular criteria for strongly-starlikeness.

Corollary 1. Let $0 < \lambda < 1$, $n \ge 1$, $\alpha \ge 0$.

If $f \in A_n$, with $\frac{f(z)}{z} \neq 0$, satisfies the condition $\left| \arg \left\{ \frac{zf'(z)}{f(z)} J(\alpha, f; z) \right\} \right| < \phi_0(n, \alpha, \lambda),$ (5)

where

$$\phi_0(n,\alpha,\lambda) = \frac{\lambda\pi}{2} + \arctan\frac{\frac{n\alpha\lambda}{1-\lambda} + \left(\frac{1+\lambda}{1-\lambda}\right)^{\frac{1+\lambda}{2}}\sin\frac{\lambda\pi}{2}}{\left(\frac{1+\lambda}{1-\lambda}\right)^{\frac{1+\lambda}{2}}\cos\frac{\lambda\pi}{2}}$$
(6)

then $f \in S^*[\lambda]$.

Proof. The domain h(U), where h is given by (4) is symmetric with respect to the real axis. Therefore, if $z = e^{i\theta}$, then in order to obtain the boundary of h(U) it is sufficient to suppose $0 \le \theta \le \pi$.

Letting $\cot \frac{\theta}{2} = t$ and $h(e^{i\theta}) = u + iv$, we find:

$$\begin{cases} u(t) = t^{\lambda} \left[-\frac{\alpha n \lambda a}{2t} (1+t^2) + (b^2 - a^2) t^{\lambda} \right] \\ v(t) = t^{\lambda} \left[\frac{\alpha n \lambda b}{2t} (1+t^2) + 2abt^2 \right] \end{cases}$$
(7)

where $a = \sin \frac{\lambda \pi}{2}$ and $b = \cos \frac{\lambda \pi}{2}$.

We also have:

$$\phi = \phi(t) = \arg h(e^{i\theta}) = \frac{\lambda\pi}{2} + \arctan \frac{\frac{\alpha n\lambda}{2}(1+t^2) + t^{\lambda+1}\sin\frac{\lambda\pi}{2}}{t^{\lambda+1}\cos\frac{\lambda\pi}{2}}.$$
 (8)

From (8) it is easy to show that the equation $\phi'(t) = 0$, has the root:

$$t_0 = \sqrt{\frac{1+\lambda}{1-\lambda}}$$

and

$$\min_{t\geq 0}\phi(t)=\phi(t_0)=\phi_0(n,\lambda)$$

where $\phi_0(n,\lambda)$ is given by (6).

We deduce that the sector $\{w : |\arg w| < \phi_0(n, \alpha, \lambda)\}$ is the largest sector which lies in h(U). Hence (5) implies

$$\frac{zf'(z)}{f(z)}J(\alpha,f;z) \prec h(z)$$

where h is given by (4) and Corollary 1 follows from Theorem 2.

Corollary 2. Let $0 < \lambda < 1$, $n \ge 1$, $\alpha \ge 0$.

If $f \in A_n$, with $\frac{f(z)}{z} \neq 0$, satisfies the condition

$$\left| \operatorname{Im} \left| \frac{zf'(z)}{f(z)} J(\alpha, f; z) \right| < V(n, \alpha, \lambda),$$
(9)

where $V(n, \alpha, \lambda) = v(t_0)$, with v given by (7) and t_0 is the root of the equation:

$$4t^{\lambda+1}\sin\lambda\pi + \alpha n(\lambda+1)t^2\cos\frac{\lambda\pi}{2} + \alpha n(\lambda-1)\cos\frac{\lambda\pi}{2} = 0$$
(10)

then $f \in S^*[\lambda]$.

Proof. From (7) we deduce:

$$v' = \lambda t^{\lambda-2} \left[\frac{\alpha n(\lambda-1)b}{2} + \frac{\alpha n(\lambda+1)b}{2}t^2 + 4abt^{\lambda+1} \right]$$

and the equation v'(t) = 0 becomes (10).

Hence

$$V(n,\alpha,\lambda) = v(t_0) = \min_{t \ge 0} v(t)$$

and we deduce that the strip $|v| < V(n, \alpha, \lambda)$ lies in h(U). Therefore (9) implies

$$\frac{zf'(z)}{f(z)}J(\alpha,f;z)\prec h(z)$$

91

and Corollary 2 follows from Thereom 2.

Corollary 3. Let $0 < \lambda < 1$, $n \ge 1$, $\alpha \ge 0$.

If $f \in A_n$, with $\frac{f(z)}{z} \neq 0$, $z \in U$, satisfies the condition:

Re
$$\left[\frac{zf'(z)}{f(z)}J(\alpha,f;z)\right] > U(n,\alpha,\lambda)$$
 (11)

where $U(n, \alpha, \lambda) = u(t_0)$, with u given by (7) and t_0 is the root of the equation:

$$4t^{\lambda+1}\cos\lambda\pi - n\alpha(\lambda+1)t^2\cos\frac{\lambda\pi}{2} - n\alpha(\lambda-1)\sin\frac{\lambda\pi}{2} = 0$$
(12)

then $f \in S^*[\lambda]$.

Proof. From (7) we deduce:

$$u' = \lambda t^{\lambda-2} \left[-\frac{\alpha n a(\lambda-1)}{2} - \frac{\alpha n a(\lambda+1)}{2} t^2 + 2(b^2 - a^2) t^{\lambda+1} \right]$$

and the equation u'(t) = 0 becomes (10).

Hence

$$U(n,\lambda) = u(t_0) = \max_{t \ge 0} u(t)$$

and we deduce that the half-plane $\{w : \text{Re } w > U(n, \alpha, \lambda)\}$ lies in h(U). Therefore (11) implies

$$\frac{zf'(z)}{f(z)}J(\alpha,f;z)\prec h(z)$$

and Corollary 3 follows from Theorem 2.

4. Examples

1) If we let n = 1, $\alpha = \frac{1}{2}$, $\lambda = \frac{1}{2}$, then from (6) we deduce

$$\phi_0\left(1,\frac{1}{2},\frac{1}{2}\right) = \frac{\pi}{4} + \arctan\left(1 + \frac{1}{3^{\frac{3}{4}}\sqrt{2}}\right) = 1.7027\dots$$

and by Corollary 1 we have the following result:

If
$$f \in A$$
, with $\frac{f(z)}{z} \neq 0$, $z \in U$ and:

$$\left| \arg \left[\frac{zf'(z)}{f(z)} \left(\frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)} + 1 \right) \right] \right| < 1.7027 \dots$$

then $f \in S^*\left[\frac{1}{2}\right]$, i.e.

$$\left|\arg\frac{zf'(z)}{f(z)}\right| < \frac{\pi}{4}.$$

92

2) If we let n = 2, $\alpha = \frac{1}{2}$, $\lambda = \frac{1}{2}$, then from (6) we deduce

$$\phi_0\left(2,\frac{1}{2},\frac{1}{2}\right) = \frac{\pi}{4} + \arctan\left(1+\frac{\sqrt{2}}{3^{\frac{3}{4}}}\right) = 1.863\ldots$$

and by Corollary 1 we have the following result:

If
$$f \in A_2$$
, with $\frac{f(z)}{z} \neq 0$, $z \in U$ and:

$$\left| \arg \left[\frac{zf'(z)}{f(z)} \left(\frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)} + 1 \right) \right] \right| < 1.863 \dots$$

then $f \in S^*\left[\frac{1}{2}\right]$, i.e.

$$\left|\arg\frac{zf'(z)}{f(z)}\right| < \frac{\pi}{4}.$$

3) If we let n = 2, $\alpha = \frac{1}{2}$, $\lambda = \frac{2}{3}$, then from (6) we deduce

$$\phi_0\left(2,\frac{1}{2},\frac{2}{3}\right) = \frac{\pi}{3} + \arctan \frac{2+5\frac{5}{6}\cdot \sqrt{3}}{5\frac{5}{6}\cdot \frac{1}{2}} = 2.2725\dots$$

and by Corollary 1 we have the following result:

If
$$f \in A_2$$
, with $\frac{f(z)}{z} \neq 0$, $z \in U$ and:
 $\left| \arg \left[\frac{zf'(z)}{f(z)} \left(\frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)} + 1 \right) \right] \right| < 2.2725...$

then $f \in S^* \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ i.e.

$$\left|\arg\frac{zf'(z)}{f(z)}\right| < \frac{\pi}{3}.$$

4) If we let n = 2, $\alpha = \frac{1}{2}$, $\lambda = \frac{1}{3}$, then from (6) we deduce

$$\phi_0\left(2,\frac{1}{2},\frac{1}{3}\right) = \frac{\pi}{6} + \arctan \frac{1+2^{\frac{2}{3}}}{2^{\frac{2}{3}}\sqrt{3}} = 1.2792\dots$$

and by Corollary 1 we have the following result:

If $f \in A_2$, with $\frac{f(z)}{z} \neq 0$, $z \in U$ and $\left| \arg \left[\frac{zf'(z)}{f(z)} \left(\frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)} + 1 \right) \right] \right| < 1.2792...$

then $f \in S^* \begin{bmatrix} \frac{1}{3} \end{bmatrix}$ i.e.

$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \frac{\pi}{6}.$$

5) If we let n = 2, $\alpha = \frac{1}{2}$, $\lambda = \frac{1}{3}$, then equation (10) becomes:

$$16t^{\frac{3}{2}} + 3\sqrt{2}t^2 - \sqrt{2} = 0$$

which has the root $t_0 = 0.1846...$ Hence by Corollary 2 we deduce the following result:

If
$$f \in A_2$$
, with $\frac{f(z)}{z} \neq 0$, $z \in U$ and:

$$\left| \operatorname{Im} \left[\frac{zf'(z)}{f(z)} \left(\frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)} + 1 \right) \right] \right| < 1.220..$$

then $f \in S^*\left[\frac{1}{2}\right]$.

6) If we let n = 2, $\alpha = \frac{1}{2}$, $\lambda = \frac{1}{2}$, then equation (12) becomes: $3t^2 - 1 = 0$ and from Corollary 3 we deduce the following result:

If
$$f \in A_2$$
, with $\frac{f(z)}{z} \neq 0$, $z \in U$, and:

$$\left| \operatorname{Re} \left[\frac{zf'(z)}{f(z)} \left(\frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)} + 1 \right) \right] \right| > -0.610..$$

then $f \in S^*\left[\frac{1}{2}\right]$.

References

- S.S. Miller and P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
- S.S. Miller and P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. I., 28(1981), 157-171.
- [3] S.S. Miller and P.T. Mocanu, The theory and applications of second order differential subordinations, Studia Univ. Babeş-Bolyai, Math., 34, 4(1989), 3-33.
- [4] P.T. Mocanu and Gh. Oros, Certain sufficient conditions for strongly-starlikeness, (to appear).
- [5] Ch. Pommerenke, Univalent Function, Vandenhoeck Ruprecht in Götingen, 1975.

University of Oradea, Department of Mathematics, 3700 Oradea, Romania