AVERAGING INTEGRAL OPERATORS AND HARDY CLASSES

GHEORGHE MICLĂUS

1. Introduction

Let $\mathcal{H}(U)$ denote the spaces of analytic functions in the unit disk $U = \{z : |z| > 1\}$ and $H_0 = \{f \in \mathcal{H}(U) : f(0) = 0\}$. If $K \subset \mathcal{H}(U)$ then an operator $A : K \to \mathcal{H}(U)$ is said to be an averaging operator on K if A(f(0)) = f(0) and $A(f)[U] \subset cof(U)$, for all $f \in K$, where cof(U) is the convex hull of f(U). In [4] was obtained the integral averaging operator:

$$A[f](z) = \frac{1}{z^{\gamma}\phi(z)} \int_0^z f(t)t^{\gamma-1}\varphi(t)dt$$
(1)

and in [6] was obtained the second-order averaging integral operator

$$F(z) = \frac{1}{\alpha z^{\gamma} \varphi(z)} \int_0^z \frac{\varphi(t)}{\phi(t)} t^{\gamma-\beta-1} \int_0^t f(s) s^{\beta-1} \phi(s) ds dt.$$
(2)

In this paper we obtain Hardy classes for these operators and we obtain result for a more general operator A_{φ} , $\varphi \in H_0$ defined by $A_{\varphi}(f) = A(f) + f'(0)A(\varphi)$, $\varphi \in H_0$.

In [2] and [3] were obtained Hardy classes for integral operators

$$I[f](z) = \left[\frac{\beta + \gamma}{z^{\gamma}} \int_0^z f^{\beta}(t) t^{\gamma - 1} dt\right]^{\frac{1}{\beta}}, \quad z \in U \text{ (Singh, 1973)}$$
(3)

$$I_{\phi,\varphi}(f)(z) = \left[\frac{\beta + \gamma}{z^{\gamma}\phi(z)} \int_0^z f^{\alpha}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}}, \quad z \in U.$$
(4)

In this paper we obtain Hardy classes for these operators, using averaging operators.

2. Preliminaries

For f analytic in U and $z = re^{i\theta}$ we denote

$$M_p(r,f) = \begin{cases} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{\frac{1}{p}}, & \text{for } 0$$

A function is said to be of Hardy class H^p , $0 if <math>M_p(r, f)$ remains bounded as $r \to 1^-$, H^∞ is the class of bounded analytic functions in the unit disk.

If f, g analytic in U, then function f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if g is univalent, f(0) = g(0) and $f(U) \subset g(U)$.

A function h is said to be convex if h is univalent and h(U) is a convex domain.

It is easy to show that an operator $A: K \to \mathcal{H}(U)$ is an averaging operator on K if and only if $[f \in K, h \text{ convex and } f \prec h] \Rightarrow A(f) \prec h$.

We shall need the following lemmas.

Lemma 1. Let $h \in H_0$, convex and let $A \ge 0$. Suppose that $k > \frac{4}{|h'(0)|}$ and B(z), C(z), D(z) are analytic in U and satisfy

Re
$$B(z) \ge A + |C(z) - 1| - \text{Re} [C(z) - 1] + k|D(z)|, \quad z \in U.$$
 (5)

If $p \in H_0$ satisfies the differential subordination

$$Az^{2}p''(z) + B(z)zp'(z) + C(z)p(z) + D(z) \prec h(z)$$
(6)

then $p(z) \prec h(z)$.

Lemma 2. Let $\delta \in \mathbb{C}$, $\delta \neq -1, -2, \ldots$ and let $\varphi, \phi \in \mathcal{H}(U)$ analytic functions with $\varphi(z)\phi(z) \neq 0, z \in U$. If

Re
$$B(z) \ge |C(z) - 1| - \text{Re} [C(z) - 1], \quad z \in U,$$
 (7)

where $B(z) = \frac{\phi(z)}{\varphi(z)}$ and $C(z) = \frac{\gamma \phi(z) + z \phi'(z)}{\varphi(z)}$, then the integral operator A defined by (1) is an averaging operator on H_0 .

Lemma 3. Let $\alpha \ge 0$, $\beta, \gamma \in \mathbb{C}$, with $\operatorname{Re} \beta > -1$ and $\operatorname{Re} \gamma > -1$ and let φ, ϕ analytic functions with $\varphi(z)\phi(z) \ne 0$, $z \in U$. Let

$$\begin{cases} B(z) = \alpha \left[\beta + \gamma + 1 + \frac{z\phi'(z)}{\phi(z)} + \frac{z\phi'(z)}{\varphi(z)} \right] \\ C(z) = \alpha \left[\left(\beta + \frac{z\phi'(z)}{\phi(z)} \right) \left(\gamma + \frac{z\varphi'(z)}{\varphi(z)} + z \left(\frac{z\varphi'(z)}{\varphi(z)} \right)' \right) \right]. \end{cases}$$
(8)

If $\theta \in H_0$ and $\operatorname{Re} B(z) \ge \alpha - |C(z) - 1| - \operatorname{Re} [C(z) - 1] + 4|\theta(z)|, z \in U$, then the operator

$$F_{\theta}[f] = F[f] + f'(0)F[\theta], \quad f \in H_0$$

where F is defined by (2), is an averaging operator on H_0 .

These lemmas were proced in [5].

Lemma 4. If f ∈ H^p, β > 0 and I is the integral operator of Singh (3) then
(i) if β > p then I[f] ∈ H^β/_{β-p}
(ii) if β ≤ p then I[f] ∈ H[∞].
Lemma 5. If f ∈ H^p, φ ∈ H^q, ¹/₄ ∈ H^r, α, β > 0 then

emma 5. If
$$f \in H^p$$
, $\varphi \in H^q$, $\frac{1}{\phi} \in H^r$, $\alpha, \beta > 0$ then
(i) if $pq then $I_{\phi,\varphi}[f] \in H^{\frac{\beta pqr}{pq+pr+\alpha qr-pqr}}$
(ii) if $pq \ge p + \alpha q$ then $I_{\phi,\varphi}[f] \in H^r$.
Lemma 4 was proved in [2] and Lemma 5 in [3].$

3. Main Results

Theorem 1. Let $h \in H_0$, be convex and $A \ge 0$, $k > \frac{4}{|h'(0)|}$, B(z), C(z), D(z)analytic in U satisfies (5) and $p \in H_0$ satisfies the differential subordination (6) then $p(z) \in H^{\lambda}, \lambda < 1$.

Proof. From Lemma 1 we obtain $p(z) \prec h(z)$. From subordination theorem of Littlewood [1] we deduce $M_{\lambda}(r, p) \leq M_{\lambda}(r, h)$. Since h is convex is very know that $h \in H^{\lambda}$, $\lambda < 1$. Hence $p(z) \in H^{\lambda}$, $\lambda < 1$.

Theorem 2. Let $\delta \in \mathbb{C}$ with $\delta \neq -1, -2, \ldots$ and $\varphi, \phi \in \mathcal{H}(U)$ with $\varphi(z)\phi(z) \neq 0$, $z \in U$, satisfying conditions (7) and A is operator defined by (1) then $A(f) \in H^p$, p < 1, for all $f, f \in H_0$.

59

Proof. From Lemma 2 the integral operator A is averaging operator on H_0 . Hence $I[f](U) \subset co f(U)$ for all $f \in H_0$. Since co f(U) is convex domain, from conformal mappings's theorem (Riemann) there is a function g analytic in U such that g(U) = co f(U). Since g(U) is convex domain we deduce that g is convex. Since $M_{\lambda}(r, I[f]) \leq M_{\lambda}(r, g)$ we obtain $I(f) \in H^p$, p < 1.

Theorem 3. Let $\gamma \in \mathbf{C}$ with $\operatorname{Re} \gamma > 0$ and let $g \in H_0$ with $\operatorname{Re} \frac{\gamma z g'(z)}{g(z)} > 0$ in U. If A is defined by

$$A[f](z) = \frac{\gamma}{g(z)} \int_0^z f(t)g(t)^{\gamma-1}g'(t)dt$$

then $A[f] \in H^p$, p < 1 for all $f \in H_0$.

Proof. If in $A \quad \varphi(z) = [g(z)]^{\gamma-1}g'(z)z^{1-\gamma}$ and $\phi(z) = [g(z)]^{\gamma}z^{-\gamma}\gamma^{-1}$ then is satisfying condition (7) and from Lemma 2, A is averaging operator in H_0 and from Theorem 2 we obtain the result.

Hence we obtain some particular results. For $\gamma = 1$, $\alpha = 1$ and g(z) = z we have the operator

$$\frac{1}{2}\int_0^z f(t)dt \in H^p, \quad p<1.$$

Since, the Libera's operator is

$$\frac{2}{z}\int_0^z f(t)dt$$

we obtain Hardy classes for that operator:

$$\frac{2}{z}\int_0^z f(t)dt \in H^p, \quad p<1.$$

For $\gamma = 0$, $\phi(z) = \frac{1}{2}$ and $\varphi(z) = 1$ we obtain

$$A[f](z) = \frac{1}{2} \int_0^z \frac{f(t)}{t} dt \in H^p, \quad p < 1.$$

Hence, we have Alexander's operator

$$\int_0^z f(t)t^{-1}dt \in H^p, \quad p < 1, \text{ for all } f, f \in H_0.$$

Theorem 4. Let be $\gamma \in \mathbb{C}$, $\gamma \neq -1, -2, ...$ and let φ, ϕ analytic functions with $\varphi(z)\phi(z) \neq 0$, $z \in U$ and satisfying conditions (7). If $I_{\phi,\varphi}$ is defined by (4) and $\alpha = 1$, $\delta = \gamma$ then $I_{\phi,\varphi}[f] \in H^{\beta\lambda}$, $\beta > 0$, $0 < \lambda < 1$, for all $f \in H_0$.

Proof. The operator $I_{\phi,\varphi}$ can be written as: $I_{\phi,\varphi} = B \circ A$ where $B(f) = (\beta + \gamma)[f(z)]^{\frac{1}{\beta}}$ and A is defined by (1). Since $f \in H^p$ applying Hölder's inequality we obtain $B(f) \in$ $H^{\beta p}$. From Theorem 2 we have $A(f) \in H^{\lambda}$, $\lambda < 1$ for all $f \in H_0$. Hence $B(A(f)) \in$ $H^{\beta\lambda}$ and $I_{\phi,\varphi}(f) \in H^{\beta\lambda}$ for all $f \in H_0$.

Theorem 5. If $\delta \in \mathbb{C}$, $\delta \neq -1, -2, ..., \varphi, \phi$ analytic functions and $\varphi(z)\phi(z) \neq 0$, $z \in U$ satisfies conditions (7), and A is the integral operator defined by (1) substituting γ with δ and I is the integral operator of Singh (3) then:

(i) if
$$\beta > 1$$
 then $I(A) \in H^{\frac{\beta}{\beta-1}}$, $\lambda < 1$
(ii) if $0 < \beta \le 1$ then $I(A) \in H^{\infty}$, for all $f \in H_0$.

Proof. From Theorem 2 we deduce $A \in H^{\lambda}$, $\lambda < 1$. From Lemma 4 we obtain the result.

Theorem 6. Let $\alpha \geq 0$, $\beta, \gamma \in \mathbf{C}$, with $\operatorname{Re} \beta > -1$ and $\operatorname{Re} \gamma > -1$ and let φ, ϕ analytic function with $\varphi(z)\phi(z) \neq 0$, $z \in U$. Let $F : H_0 \to H_0$ defined by (2) and suppose that are satisfying (8).

If $\theta \in H_0$ and Re $B(z) \ge \alpha - |C(z) - 1| - \text{Re} [C(z) - 1] + 4|\theta(z)|, z \in U$, then the operator $J_{\theta}[f] = F[f] + f'(0)F[\theta]$ we have $J_{\theta}(f) \in H^{\lambda}$, $\lambda < 1$, for all $f \in H_0$.

Proof. From Lemma 3 we obtain that J_{θ} is averaging integral operator. Hence $J_{\theta}[f](U) \subset co f(U)$, where co f(U) is convex domain. From Riemann's theorem exists a convex function g such that g(U) = co f(U). Hence we deduce $M_{\lambda}(r, J_{\theta}) \leq M_{\lambda}(r, g)$, and we obtain the results.

Remark 1. Analog with Theorem 4 we can obtain results for Hardy classes for $I[J_{\theta}]$ where I is the integral operator of Singh.

Remark 2. Analog with Theorem 7 [2] we can obtain results for Hardy classes for the n-order integral operator of Singh.

GHEORGHE MICLĂUŞ

References

- [1] Duren, P.L., Theory of H^p Spaces, Academic Press, New York and London, 1970.
- Micláuş, Gh., Integral Operator of Singh and Hardy Classes, Studia Univ. Babeş-Bolyai, Mathematica, 42, 2(1997), 71-77.
- [3] Miclauş, Gh., Some Integral Operators and Hardy Classes, Studia Univ. Babeş-Bolyai, Mathematica, 41, 3(1996), 57-64.
- [4] Miller, S.S., Mocanu, P.T., Mean-value Theorems in the Complex Plane, Babes-Bolyai Univ., Fac. of Math. Reasearch Seminars, Seminar in Geometric Functions Theory, Preprint 5(1987), 199-211.
- [5] Miller, S.S., Mocanu, P.T., The theory and Applications of Second-Order Differential Subordinations, Studia Univ. Babes-Bolyai, Math., 34, 4(1989), 3-33.
- [6] Mocanu, P.T., Second-order Averaging Operators for Analytic Functions, Rev. Roumaine Math. Pures Appl., 33(1988), 10, 875-881.

MIHAI EMINESCU COLLEGE, 3900 SATU MARE, ROMANIA