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AVERAGING INTEGRAL OPERATORS AND HARDY CLASSES

GHEORGHE MICLAUS

1. Introduction

Let H(U) denote the spaces of analytic functions in the unit disk U = {z :
2] > 1} and Hy = {f € H(U) : f(0) = 0}. If K C H(U) then an operator
A : K = H(U) is said to be an averaging operator on K if A(f(0)) = f(0) and
A(NHU] C co f(U), for all f € K, where co f(U) is the convex hull of f(U). In [4]

was obtained the integral averaging operator:

AN = 75 [ rorea (1

and in [6] was obtained the second-order averaging integral operator

2 = 1 2 o) yep-1 [ )P
PO = orors || St [ S0 s(o)dsat @

In this paper we obtain Hardy classes for these operators and we obtain
result for a more general operator A, ¢ € Hy defined by A,(f) = A(f) + F'(0)A(p),
@ € Ho.

In [2] and [3] were obtained Hardy classes for integral operators

; }
I[f](Z)=[-ﬂ—Zl /0 f"(t)t“"ldt] , 2z €U (Singh, 1973) (3)
L@ = [222 [ prtyetntar]”, seu ()

In this paper we obtain Hardy classes for these operators, using averaging

operators.
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2. Preliminaries

For f analytic in U and z = re'® we denote

1 2m " ':?
— f(ret pd0) , for0<p< oo
e = (ae ) e
sup |f(re'?)], for p = o0.
0<6<2m

A function is said to be of Hardy class H?, 0 < p < oo if My(r, f) remains
bounded as r — 17, H® is the class of bounded analytic functions in the unit disk.

If f,g analytic in U, then function f is subordinate to g, written f < g or
f(2) < g(2), if g is univalent, £(0) = ¢g(0) and f(U) C g(U).

A function h is said to be convex if h is univalent and h(U) is a convex
domain.

It is easy to show that an operator A : K — H(U) is an averaging operator
on K if and only if [f € K, h convex and f < k] = A(f) < h.

We shall need the following lemmas.

Lemma 1. Let h € Hy, conver and let A > 0. Suppose that k > ﬁl- and
B(z),C(z), D(z) are analytic in U and satisfy
Re B(z) > A+ |C(z) — 1| —Re [C(z) = 1]+ k|D(2)|, z€U. (5)
If p € Hy satisfies the differential subordination
AZ*p"(z) + B(2)zp'(2) + C(2)p(z) + D(2) < h(z) (6)

then p(z) < h(z).
Lemma 2. Let § € C, § # —1,-2,... and let p,¢ € H(U) analytic functions with
p(2)¢(2) #0,z€U. If

Re B(z) 2 |C(z) - 1| -Re [C(z) - 1], z€U, (7

where B(z) = % and C(z) = W—)—, then the integral operator A defined

by (1) is an averaging operator on Hy.
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Lemma 3. Let a > 0, B,y € C, with Re § > —1 and Rey > —1 and let p, ¢
analytic functions with ¢(z)¢(2) #0, 2 € U. Let

B(z)=a|f+7y+1+ —ZZES) + ZZ;S)]
/ / / / (8)
— 2¢'(2) 2¢'(2) z¢'(2)
ow=|(s+53) (" 25+ (55 )] |

If 6 € Hy and Re B(z) > a — |C(z) — 1] — Re [C(z) — 1] + 4|6(2)|, z € U,
then the operator

Fo[f] = Ff1+ F'(0)F[8], f € Ho

where F is defined by (2), is an averaging operator on Hj.
These lemmas were proced in [5].
Lemma 4. If f € H?, 8> 0 and I is the integral operator of Singh (3) then
(i) if B> p then I[f] € H?=5
(i) if B < p then I[f] € H™.
Lemma 5. If f € HP, p € HY, % €H", o, >0 then
(i) if pg < p+ aq then Iy ,[f] € H ravir o=
(i) of pg > p+ aq then Iy ,[f) € H'.

Lemma 4 was proved in [2] and Lemma 5 in [3].

3. Main Results

4
Theorem 1. Let h € Ho, be conver and A > 0, k > O B(z),C(z), D(z)
analytic in U satisfies (5) and p € Hy satisfies the differential subordination (6) then

p(z) e H*, A< 1.

Proof. From Lemma 1 we obtain p(z) < h(z). From subordination theorem of Little-
wood [1] we deduce My (r,p) < My(r, k). Since h is convex is very know that h € H?*,
A < 1. Hence p(z) € H* A < 1. O

Theorem 2. Let § € C withd # —1,-2,... and ¢,¢ € H(U) with p(2)¢(z) # 0,
z € U, satisfying conditions (7) and A is operator defined by (1) then A(f) € HP,
p<1, forall f, f € Hy.
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Proof. From Lemma 2 the integral operator A is averaging operator on Hy. Hence
I[f1(U) C co f(U) for all f € Hy. Since co f(U) is convex domain, from conformal
mappings’s theorem (Riemann) there is a function g analytic in U such that g(U) =
co f(U). Since g(U) is convex domain we deduce that g is convex. Since M (r, I[f]) <
M) (r, g) we obtain I(f) € H?,p< 1. O
v29'(2)

Theorem 3. Let v € C with Re v > 0 and let g € Hy with Re 9G)

A is defined by

>0inU. If

z) = _7_ : =1,
A[f)(z) P /0 f(@)g(t)~ g (t)dt
then A[f]) € HP, p< 1 for all f € Hy.

Proof. fin A ¢(z) = [g(2)]""1¢’(2)z} " and ¢(z) = [g(2)]’ 2~ 7y~ then is satisfying
condition (7) and from Lemma 2, A is averaging operator in Hy and from Theorem

2 we obtain the result.

Hence we obtain some particular results. For y =1, &« = 1 and g(z) = z we

have the operator
1/ fydte HP, p<1.
2 Jo

Since, the Libera’s operator is

% /0 " )t

we obtain Hardy classes for that operator:
2 Z
-[ f(t)dt € HP, p<1.
zJo
1 .
For vy =0, ¢(z) = 3 and ¢(z) = 1 we obtain
1 1% f(@t
Alfl(z) = —/ 1) 4 €H?, p<l.
2/ t
Hence, we have Alexander’s operator

z
/ f@)t~'dt € H?, p< 1, forall f, f € Hy.
0
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Theorem 4. Let be vy € C, v # —1,-2,... and let ¢, $ analytic functions with
e(2)¢(z) # 0, z € U and satisfying conditions (7). If Iy, is defined by (4) and
a=1,8 =7 then I ,[fl€ HP* B>0,0< A< 1, forall f € Ho.

Proof. The operator Iy, can be written as: Iy, = BoA where B(f) = (B+7)f(2))#
and A is defined by (1). Since f € HP applying Hélder’s inequality we obtain B(f) €
HPP_ From Theorem 2 we have A(f) € H*, A < 1 for all f € Hy. Hence B(A(f)) €
HP* and Iy ,(f) € HP* for all f € Ho. a

Theorem 5. If§ € C, § # —1,-2,..., p,¢ analytic functions and p(z)$(z) # 0,
z € U satisfies conditions (7), and A is the integral operator defined by (1) substituting
v with § and I is the integral operator of Singh (3) then:

(i) if B> 1 then I(A) € HF¥ A< 1

(i1) if 0 < B < 1 then I(A) € H®, for all f € Hy.

Proof. From Theorem 2 we deduce A € H*, A < 1. From Lemma 4 we obtain the
result. O

Theorem 6. Let a > 0, B,y € C, with Re 8 > —1 and Re vy > —1 and let ¢, ¢
analytic function with ¢(2)¢(z) # 0, 2 € U. Let F : Hy — Hy defined by (2) and
suppose that are satisfying (8).

If0 € Hy and Re B(z) > a—|C(z) —1]—Re [C(z) — 1] +4|6(z)|, z € U, then
the operator Jo[f] = F[f] + f'(0)F[8] we have Jo(f) € H*, A < 1, for all f € Hp.

Proof. From Lemma 3 we obtain that Jy is averaging integral operator. Hence
Js[f1(U) C co f(U), where co f(U) is convex domain. From Riemann’s theorem exists
a convex function g such that g(U) = co f(U). Hence we deduce M) (r, Jy) < Mx(r,g),

and we obtain the results. O

Remark 1. Analog with Theorem 4 we can obtain results for Hardy classes for I[Jp]
where I is the integral operator of Singh.
Remark 2. Analog with Theorem 7 [2] we can obtain results for Hardy classes for the

n-order integral operator of Singh.
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