DIFFERENTIAL AND INTEGRAL OPERATORS PRESERVING FUNCTIONS WITH POSITIVE REAL PART AND HARDY CLASSES

GHEORGHE MICLĂUŞ

1. Introduction

Let $\mathcal{H}(U)$ set of denote the functions analytic in the unit disk $U = \{z : |z| < 1\}$. In [4] the authors develop differential and integral operators preserving functions with positive real part.

In [2] and [3] sharp results concerning the boundary behaviour of I(f), $I_g(f)$ and $I_{\phi,\varphi}(f)$ when f belongs to the Hardy spaces H^p , 0 , where <math>I(f), $I_g(f)$ and $I_{\phi,\varphi}(f)$ is the integral operator defined by:

$$I[f](z) = \left[\frac{\beta + \gamma}{z^{\gamma}} \int_0^z f^{\beta}(t) t^{\gamma - 1} dt\right]^{\frac{1}{\beta}}, \quad z \in U, \text{ (Singh, 1973)}$$
(1)

$$I_g(f)(z) = \left[\frac{\beta + \gamma}{z^{\gamma}} \int_0^z \left[\frac{f(t)}{t}\right]^{\alpha} \left[\frac{g(t)}{t}\right]^{\delta} t^{\alpha + \delta - 1} dt\right]^{\frac{1}{\beta}}, \quad z \in U$$
(2)

$$I_{\phi,\varphi}(f)(z) = \left[\frac{\beta+\gamma}{z^{\gamma}\phi(z)}\int_{0}^{z}f^{\alpha}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}}, \quad z \in U \text{ (Miller, Mocanu, 1991)} \quad (3)$$

In this paper we obtain results for the Hardy classes of these integral operators when f satisfy some differential conditions.

2. Preliminaries

For $f \in \mathcal{H}(U)$ and $z = re^{i\theta}$ we denote

$$M(r,f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{\frac{1}{p}}, \text{ for } 0$$

and

$$M_{\infty}(r,f) = \sup_{0 \le \theta \le 2\pi} |f(re^{i\theta})|$$
 for $p = \infty$.

A function is said to be of Hardy class H^p , 0 if <math>M(r, f) remains bounded as $r \to 1^-$, H^∞ is the class of bounded analytic functions in the unit disk.

We shall need the following lemmas:

Lemma 1. Let $A \ge 0$ and $B, C, D: U \rightarrow C$ with

$$\operatorname{Re} B(z) \ge A$$

$$[\operatorname{Im} C(z)]^2 \le [\operatorname{Re} B(z) - A]\operatorname{Re} [B(z) - A - 2D(z)].$$
(4)

If f is analytic in U with f(0) = 1 and

Re
$$[Az^2 f''(z) + B(z)zf'(z) + C(z)f(z) + D(z)] > 0$$
 (5)

then Re f(z) > 0.

Lemma 2. Let $\eta \neq 0$, $\eta \in \mathbf{C}$, Re $\eta \geq 0$ and φ, ϕ analytic functions in U, $\varphi(z)\phi(z) \neq 0$, $\varphi(0) = \phi(0)$, and

$$\left| \operatorname{Im} \frac{\eta \phi(z) + z \phi'(z)}{\eta \varphi(z)} \right| \le \operatorname{Re} \frac{\phi(z)}{\eta \varphi(z)}.$$
(6)

Let f be analytic in U with f(0) = 1 and Re $f(z) > 0, z \in U$. If f is defined by:

$$F(z) = \frac{\eta}{z^{\eta}\phi(z)} \int_0^z f(t)t^{\eta-1}\varphi(t)dt$$
(7)

then F is analytic in U, F(0) = 1 and Re F(z) > 0, $z \in U$.

Lemma 3. Let β and γ be complex numbers with $\beta\gamma > 0$, Re $\beta \ge 0$, Re $\gamma \ge 0$, φ and ϕ be analytic in U with $\varphi(z)\phi(z) \ne 0$, $\varphi(0) = \phi(0)$ and w be analytic in U with w(0) = 0. Suppose that (4) holds with

$$\begin{cases}
A = \frac{1}{B\gamma}, \quad D(z) = -w(z) \\
B(z) = \frac{1}{\beta} \left[\beta + \gamma + 1 + z \frac{\varphi'(z)}{\varphi(z)} + \frac{z \phi'(z)}{\phi(z)} \right] \\
C(z) = \frac{1}{\beta\gamma} \left[\left(\beta + \frac{z \phi'(z)}{\phi(z)} \right) \left(\gamma + \frac{z \varphi'(z)}{\varphi(z)} + z \left(\frac{z \varphi'(z)}{\varphi(z)} \right)' \right) \right]
\end{cases}$$
(8)

Let f be analytic in U with f(0) = 1 and Re f(z) > 0, $z \in U$.

 $\mathbf{52}$

If f is defined by:

$$F(z) = \frac{\beta}{z^{\gamma}\varphi(z)} \int_0^z \frac{\varphi(t)}{\phi(t)} t^{\gamma-\beta-1} \int_0^t [f(s) + w(s)]\phi(s)s^{\beta-1} ds dt$$
(9)

then F is analytic in U, F(0) = 1 and Re F(z) > 0, $z \in U$.

Lemma 1-3 was proved in [4].

Lemma 4. [1] If $f \in \mathcal{H}(U)$ and Re f(z) > 0, $z \in U$ then $f \in H^p$, p < 1.

Lemma 5. If $f \in H^p$, b > 0 and I is the integral operator of Singh (3) then

(i) if $\beta > p$ then $I[f] \in H^{\frac{\beta p}{\beta - p}}$; (ii) if $\beta < p$ then $I[f] \in H^{\infty}$.

Lemma 6. If $f \in H^p$, $g \in H^q$, $p, q, \alpha, \beta, \delta \in \mathbf{R}^*_+$ then (i) if $\frac{pq}{\delta p + \alpha q} < 1$ then $I_g(f) \in H^{\frac{\beta pq}{\delta p + \alpha q - pq}}$; (ii) if $\frac{pq}{\delta p + \alpha q} \ge 1$ then $I_g(f) \in H^{\infty}$. Lemma 7. If $f \in H^p$, $\varphi \in H^q$, $\frac{1}{\phi} \in H^r$, $\alpha, \beta > 0$ then (i) if $pq then <math>I_{\phi,\varphi}[f] \in H^{\frac{\beta pqr}{pq + pr + \alpha qr - pqr}}$; (ii) if $pq > p + \alpha q$ then $I_{\phi,\varphi}[f] \in H^r$.

Lemma 5 was proved in [2] and Lemma 6 and Lemma 7 was proved in [3].

3. Main results

Theorem 1. Let be $A \ge 0$ and $B, C, D : U \rightarrow C$ satisfying condition (4). If f analytic in U, f(0) = 1 and

Re
$$[Az^2f''(z) + B(z)zf'(z) + C(z)f(z) + D(z)] > 0, A_i \in \mathbb{C}$$

then

$$F(z) = A_0 + A_1 f(z) + A_2 f^2(z) + \dots + A_n f^n(z) \in H^{\frac{\lambda}{n}}, \quad \lambda < 1.$$

Proof. From Lemma 1 and Lemma 4 we have $f(z) \in H^{\lambda}$, $\lambda < 1$. Hence we deduce $f^{n}(z) \in H^{\frac{\lambda}{n}}$. By applying Minkowski's inequality we obtain the result.

Theorem 2. Let $A \ge 0$ and $B, C, D : U \to C$ satisfying conditions (4) and f analytic in U, f(0) = 1 and (5). If $\beta > 0$, $\gamma \in C$ and I is integral operator of Singh (1) then

(i) if
$$\beta > 1$$
 then $I[f] \in H^{\frac{\beta}{\beta-\lambda}}$, $\lambda < 1$;
(ii) if $\beta \le 1$ then $I[f] \in H^{\infty}$.

Proof. From Lemma 1 and Lemma 4 we obtain $f(z) \in H^{\lambda}$, $\lambda < 1$. From Lemma 5 we obtain the result.

Theorem 3. Let be $\delta \neq 0$, Re $\delta \geq 0$ and φ , ϕ analytic functions in U, with $\varphi(z)\phi(z) \neq 0$, $\varphi(0) = \phi(0)$ satisfying condition (6), f analytic in U with f(0) = 1 and Re f(z) > 0, $z \in U$ and F defined by (7). If $\beta > 0$, $\gamma \in \mathbf{C}$ and I is defined by (1) then: (i) if $\beta > 1$ then $I[F] \in H^{\frac{\beta}{\beta-\lambda}}$, $\lambda < 1$;

(ii) if $\beta \leq 1$ then $I[F] \in H^{\infty}$.

Proof. From Lemma 2 and Lemma 4 we deduce $F \in H^{\lambda}$, $\lambda < 1$, and from Lemma 5 we obtain the result.

Theorem 4. Let be $\eta \neq 0$, $\eta \in \mathbf{C}$, Re $\eta \geq 0$ and $\dot{\varphi}, \phi$ analytic functions in U, with $\varphi(z)\phi(z) \neq 0$, $\varphi(0) = \phi(0)$ and satisfying (6).

If f analytic in U, f(0) = 1, Re f(z) > 0, $z \in U$, F defined by (7) and I_g defined by (2) then:

(i) if
$$\frac{\lambda\mu}{\delta\lambda + \alpha\mu} < 1$$
 then $I_F[f] \in H^{\frac{\beta\lambda\mu}{\delta\lambda + \alpha\mu - \lambda\mu}}$, $0 < \lambda < 1$, $0 < \mu < 1$;
(ii) if $\frac{\lambda\mu}{\delta\lambda + \alpha\mu} < 1$ then $I_F[f] \in H^{\infty}$, $0 < \lambda < 1$, $0 < \mu < 1$.

Proof. From Lemma 2 we obtain Re F(z) > 0 and from Lemma 4 we deduce $F(z) \in H^{\mu}$, $\mu < 1$. Since Re f(z) > 0 we have $f \in H^{\lambda}$, $\lambda < 1$. Applying again Lemma 6 we obtain the result.

Remark 1. An analog result we can obtain for F defined by (9).

Theorem 5. Let $\alpha = 1$, $\beta > 0$, $\gamma \in C$, Re $\gamma \ge 0$, $\delta = \gamma$, ϕ and γ analytic functions in U, with $\varphi(z)\phi(z) \ne 0$, $\varphi(0) = \phi(0)$ satisfying (6) and f analytic in U, f(0) = 1, Re $f(z) \ge 0$, $z \in U$, then

$$I_{\phi,\varphi}[f] \in H^{p\beta}, \quad p < 1.$$

Proof. From Lemma 2, for $\eta \in \mathbb{C}^*$, Re $\eta \geq 0$,

$$F(z) = \frac{\eta}{z^{\eta}\phi(z)} \int_0^z f(t)\varphi(t)t^{\eta-1}dt$$

we have Re F(z) > 0. Hence $F \in H^p$, p < 1.

For $\eta = \gamma$ we obtain

$$\frac{\gamma}{\beta+\gamma}\cdot\frac{\beta+\gamma}{z^{\gamma}\phi(z)}\int_{0}^{z}f(t)\varphi(t)t^{\gamma-1}dt\in H^{p}$$

and

$$\frac{\gamma}{\beta+\gamma}I_{\phi,\varphi}\in H^{p\beta}$$

 \mathbf{and}

$$I_{\phi,\varphi} \in H^{p\beta}.$$

-	-
	_

Theorem 6. Let $\eta \neq 0$, $\eta \in \mathbb{C}$, Re $\eta \geq 0$ and φ, ϕ analytic functions in U, with $\varphi(z)\phi(z) \neq 0$, $\varphi(0) = \phi(0)$ satisfying (6). Let be f analytic in U, f(0) = 1, Re f(z) > 0, $z \in U$ and F defined by (7). If $i_{\phi,\varphi}$ is defined by (3), $\alpha, \beta, \gamma, \delta > 0$ and $g \in H^p$, $0 < \lambda < 1$, $0 < \mu < 1$ then

(i) if
$$p\lambda then $U_{F,f}(g) \in H^{\frac{pp\lambda\mu}{p\lambda+p\mu+\alpha\lambda\mu-p\lambda\mu}}$;
(ii) if $p\lambda \ge p + \alpha\lambda$ then $I_{F,f}(g) \in H^{\infty}$.$$

Proof. From Lemma 4 we have $f \in H^{\lambda}$, $\lambda < 1$. From Lemma 2 we obtain Re F(z) > 0and Re $\frac{1}{F(z)} > 0$. From Lemma 4 we have $\frac{1}{F(z)} \in H^{\mu}$, $\mu < 1$.

Applying again Lemma 7 replacing ϕ with F, φ with f and f with g we obtain the result.

Remark 2. An analog result we can obtain for F defined by (9) or g is defined by (9).

References

- [1] Duren, P.L., Theory of H^p Spaces, Academic Press, New York and London, 1970.
- Miclăuş, Gh., Integral Operator of Singh and Hardy Classes, Studia Univ. Babeş-Bolyai, Mathematica, 42, 2(1997), 71-77.
- [3] Miclăuş, Gh., Some Integral Operators and Hardy Classes, Studia Univ. Babeş-Bolyai, Mathematica, 41, 3(1996), 57-64.
- [4] Miller, S.S., Mocanu, P.T., The theory and Applications of Second-Order Differential Subordinations, Studia Univ. Babeş-Bolyai Math., 34, 4(1989), 3-33.

MIHAI EMINESCU COLLEGE, 3900 SATU MARE, ROMANIA