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DIFFERENTIAL AND INTEGRAL OPERATORS PRESERVING
FUNCTIONS WITH POSITIVE REAL PART AND HARDY CLASSES

GHEORGHE MICLAUS

1. Introduction

Let H(U) set of denote the functions analytic in the unit disk U = {z: |z| <
1}. In [4] the authors develop differential and integral operators preserving functions
with positive real part.

In [2] and [3] sharp results concerning the boundary behaviour of I(f), Iy(f)
and Iy ,(f) when f belongs to the Hardy spaces H?, 0 < p < oo, where I(f), I4(f)
and Iy ,(f) is the integral operator defined by:

1f1(z) = [ﬁ + / £(t) t”"ldt] , z€U, (Singh, 1973) (1)

=

Ly(H)(2) =

ﬂ+7 ’[@]ahl(tt_)rtaﬂ-ldtr, zeU (2)

=

Iso(f)(2) = [ﬁ;(:) /Oz fa(t)‘P(t)té-ldt- , z € U (Miller, Mocanu, 1991) (3)

In this paper we obtain results for the Hardy classes of these integral operators

when f satisfy some differential conditions.

2. Preliminaries
For f € H(U) and z = re'® we denote

27 ﬁ
M(r,f)= (;ﬂ_/ |f(re‘0)|"d9) ,for0<p<oo
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and
My (r,f) = sup |f(re’9)| for p = co.

A function is said to be of Hardy class H?, 0 < p < oo if M(r, f) remains
bounded as » — 1=, H* is the class of bounded analytic functions in the unit disk.
We shall need the following lemmas:

Lemma 1. Let A> 0 and B,C,D : U — C with

Re B(z) > A @)
[Im C(2)]? < [Re B(z) — A]Re [B(z) — A —2D(z)].

If f is analytic in U with f(0) =1 and
Re [A2°f"(2) + B(2)zf'(2) + C(2) f(2) + D(2)] > 0 (5)

then Re f(z) > 0.
Lemma 2. Let n# 0, n € C, Re 7 > 0 and ¢, ¢ analytic functions in U, p(2)¢(z) #
0, »(0) = ¢(0), and

o 78(2) +26'(2) ¢(2)
@S @ ©
~ Let f be analytic in U with f(0) =1 and Re f(z) >0, z€U.
If f is defined by:
PO = s [ 00 e0a )

then F is analytic in U, F(0) =1 and Re F(z) >0, z € U.
Lemma 3. Let § and v be complex numbers with By > 0, Re 8 >0, Rey > 0, ¢
and ¢ be analytic in U with p(2)¢(z) # 0, ¢(0) = ¢(0) and w be analytic in U with
w(0) = 0. Suppose that (4) holds with

1

A= B D(z) = —w(z)
1 #z) | 2¢'(2)
e = ﬂ[‘””” FOREON ®

W [ WG (@)
e = [("* o) e (55 )]
Let f be analytic in U with f(0) =1 and Re f(z) >0,z € U.
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If f is defined by:
R = 5o [ 80001 ['110) + wiolotetasat @)

then F is analytic in U, F(0) =1 and Re F(z) >0,z € U.

Lemma 1-3 was proved in [4].
Lemma 4. [1) If f € H(U) and Re f(2) >0, z € U then f € H?, p< 1.
Lemma 5. If f € HP, b > 0 and I is the integral operator of Singh (3) then

(i) if B> p then I[f] € H7=5;

(ii) if B < p then I[f] € H*™.
Lemma 6. If f € H?, g€ HY, p,q,,3,0 € R} then

- Pq __Bpa
(2) 1f 6p+aq < 1 then Ig(f) € H5P+aq-—rq;

(ii) if Jp’jf

1
Lemma 7. If f € H?, p € HY, p €H", a,3> 0 then

(i) if pq < p+ aq then I, [f] € HrFordosr=ser ;
(i) if pg > p+ aq then Iy ,[f] € HT.

Lemma 5 was proved in [2] and Lemma 6 and Lemma 7 was proved in [3].

oo
- > 1 then Iy(f) € H®.

3. Main results
Theorem 1. Let be A > 0 and B,C,D : U — C satisfying condition ({). If f
analytic in U, f(0) =1 and
Re [A2?f"(2) + B(z)zf' (z) + C(2)f(2) + D(2)] >0, A; €C
then
F(2) = Ao+ ALf(2) + Aof?(2) + -+ A f"(2) €H®, A< L.

Proof. From Lemma 1 and Lemma 4 we have f(z) € H*, A < 1. Hence we deduce

ff(z)eH %. By applying Minkowski’s inequality we obtain the result. 0

Theorem 2. Let A > 0 and B,C, D : U — C satisfying conditions (4) and f analytic
inU, f(0) =1and (5). If 3 >0, v € C and I is integral operator of Singh (1) then
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(i) if B> 1 then I[f] € H#*X, A< 1;
(ii) if B < 1 then I[f] € H™.

Proof. From Lemma 1 and Lemma 4 we obtain f(z) € H*, A < 1. From Lemma 5

we obtain the result. ]

Theorem 3. Let be § # 0, Re § > 0 and ¢, ¢ analytic functions in U, with o(z)¢(2) #
0, p(0) = ¢(0) satisfying condition (6), f analytic in U with f(0) =1 and Re f(z) >
0, z € U and F defined by (7). If 8> 0, v € C and I is defined by (1) then:

(i) if B> 1 then I[F] € H?* A< 1;

(i) if B <1 then I[Fl € H®.

Proof. From Lemma 2 and Lemma 4 we deduce F € H*, A < 1, and from Lemma 5

we obtain the result. O

Theorem 4. Let be n # 0, n € C, Re > 0 and ¢, ¢ analytic functions in U, with
o(2)8(2) £ 0, $(0) = $(0) and satisfying ().

If f analytic in U, f(0) = 1,"Re f(z) > 0, z € U, F defined by (7) and I,
defined by (2) then:

LA

(i) zf6A+Pa#<1then Ip[fl€ HoFai=a, 0< A< 1,0< p< 1;
o Au
(i) zf&z\+ap

<1lthen Ip[fle H®,0< A<, 0<p< 1.

Proof. From Lemma 2 we obtain Re F'(z) > 0 and from Lemma 4 we deduce F(z) €
H*, p < 1. Since Re f(z) > 0 we have f € H*, A < 1. Applying again Lemma 6 we
obtain the result. O

Remark [. An analog result we can obtain for F' defined by (9).

Theorem 5. Leta=1, >0, v e C, Rey >0, §d =4, ¢ and v analytic functions
in U, with p(2)¢(z) # 0, ¢(0) = ¢(0) satisfying (6) and f analytic in U, f(0) =1,
Re f(z) >0, z € U, then

I‘i’,‘P[f] € Hpﬂ’ p<l1.
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Proof. From Lemma 2, for n € C*, Re > 0,

1 /z -1
F(z) = —— )p(t)t" L dt,
()= 795 |, 10000
we have Re F(z) > 0. Hence F € HP, p< 1.
For n = « we obtain

T B+q [? 1
= /0 FO)p(t)1dt € HP

and
o~ i
——14,, € HPP
ﬂ+7 ¢n¢
and
I¢.¢p € pr.

O

Theorem 6. Letp # 0, n € C, Re p > 0 and ¢, ¢ analytic functions in U, with
o(2)d(z) # 0, (0) = ¢(0) satisfying (6). Let be f analytic in U, f(0) = 1, Re f(2) >
0, z € U and F defined by (7). If iy, is defined by (3), @, 8,7, > 0 and g € H?,
0<A<1,0<p<1 then

(i) if pA < p+ a) then Ur ;(g) € HPFendetosn ;

(i) if pA > p+ al then Ips(g9) € H™.

Proof. From Lemma 4 we have f € H*, A < 1. From Lemma 2 we obtain Re F(z) > 0

1 1
—— > 0. 4 — N .
and Re ) > 0. From Lemma 4 we have ) EH!, u<1

Applying again Lemma 7 replacing ¢ with F, ¢ with f and f with g we
obtain the result. O

Remark 2. An analog result we can obtain for F defined by (9) or g is defined by (9).
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