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A NUMERICAL METHOD FOR APPROXIMATINGTHE SOLUTION
OF AN INTEGRAL EQUATION FROM BIOMATHEMATICS

C. IANCU

Abstract. ’In lucrare se d& 0 metodd numerici unei ecuatii integrale cu
argument modificat, care modeleazi procesul de rédspandire a unei infectii.

Rezultatul principal al lucr3rii este enuntat sub forma teoremei 5.1

1. Introduction

In the study of the problem which appears in the population dynamics, where

certain periodical phenomena occur, the following integral equation holds:

z(t) = t f(u,z(u))du, teR (L.1)

t—7

where f € C(R x Ry) fulfils the condition of periodicity with respect to ¢, that is
ft+w,z)=f(t,z), forteR, € Ry, w>0. (1.2)
If we suppose that 7 € R4 and
0< f(t,z) <M, fortc Rand z € R, (1.3)

then the problem of finding periodical solutions of equation (1.1) can be considered.

The equation (1.1) can be a mathematical model for the spreading of certain
infectious diseases with a contact rate that varies seasonally. In this case z(t) repre-
sents the proportion of the infectives in population at the time t, 7 is the time interval
an individual remains infectious and f(t,z(t)) represents the proportion of new in-
fectives per unit time. In the papers [1]-[4], it is tackled this important problem and
are given sufficient conditions for existence of non-trivial periodic nonnegative and

continuous solutions of equation (1.1).
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On the basis of these results, the aim of this paper is to present a numerical

method for obtaining the solutions of equation (1.1).

2. The existence and uniqueness of solution
In [5] the following mapping is attached to equation (1.1):
A: Xy - C(R),
which is defined by the right-hand side of (1.1), where

Xy ={zeX|z(t)>0, (V) t€ R},

and
X ={zeCR)| z(t +w) =z(t), (V)t €R}.
Because we have
t4+w t
(Az)(t + w) = / f(s,z(s))ds = fls+w,z(s+w))ds =
ttw—1 t—7

= [ fo.2(o)ds = (am)t)

and

t—r<t, f>0,

it results that X is a invariant subset of A.

If we suppose that

If(t:z) — £, y)| < a(t)lz —yl, (V) t€ R and 7,y € Ry (2.1)

t
/ a(s)ds<g<lforallteR (2.2)
t

-7
then A is a contraction mapping.

The following result is given in [5]:
Theorem 2.1. If the conditions (1.2), (1.8), (2.1) and (2.2) are satisfied, then in
C(R,R}) the equation (1:1) has a unique periodic continuous nonnegative solution
which can be obtained by the method of successive approzimations.

Also, in [3], is proved the following theorem.
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Theorem 2.2. If the following assumptions are satisfied: (i) f(t, ) is nonnegative

and continuous for

—7<t<Tandz>0,T>0

(i1) ¢(t) is continuous and 0 < a < ¢(t) foe —r <t < 0 where the proportion ¢(t) of

infectives in population is known for —7 <t <0, i.e.
z(t) = ¢(t), for —T <t <0

and

0
s =b= [ fs,9(s))ds

(i1i) there exists an integrable function g(t) such that f(t,z) > g(t) for -7 <t < T,

z > a and

t
/ g(s)ds>a for0<t<T
t—T1

(iv) there exists L > 0 such that

|f(t,2) = f(t,y)| < Llz - y|

for allt € [-7,T] and z,y € [a,0), then equation (1.1) has a unique continuous
solution z(t), z(t) > a, for —r <t < T, which satisfies the condition z(t) = §(t), for
—7 <t < 0; moreover,

Oréltas)% |zn(t) —z(t)] > 0 asn = oo

where £,(t) = ¢(t) for -7 <t < 0 (n = 0,1,2,...), zo(t) = b and z,(t) =
t
f(s,2n-1(s))ds, 0<t<T (n=1,2,...).

t—1
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3. The statement of the problem

We consider the nonlinear integral equation (1.1) and we suppose that the
hypotheses of the Theorems 2.1 and 2.2 are satisfied. Then this equation has a unique
solution on the interval [—7, T]. Let ¢ be the solution, which, by virtue of the theorem

2.2, can be obtained by successive approximation method. So, we have

' p(t) = #(t), for t € [-7,0) and for t € [0,T]

we have :
0

polt) = $(0) = b = [ (s, $(s))ds

o) = [ Fs,p0(s))ds

< rad (3.1)
pat) = . f(s,p1(8))ds

oml®)= [ 6 mes(o)ds,

[ -

To obtain the sequence of successive approximations (3.1), it is necessary to
calculate the integrals which appear in the right-hand side. In general, this problem
is difficult. We shall use the trapezoidal rule.

Let an interval [a,b] C R be given, and the function f € C?[a, b).

Divide the interval [a, b] by the points

a=2g<zr1<23< - <zTp=b (3.2)

—a

into n equal parts of length Az = b

Then we have the trapezoidal formula:

b n-1
/ f(z)dz = b 2”n“ [ Fla) + F(6) + 2 f(=i)| + ralf) (3.3)

=1
where 7,(f) is the remainder of the formula.

To evaluate the approximation error of the trapezoidal formula there exists

the following result.
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Theorem 4.1. For every function f € C?[a,b)], the remainder r,(f) from the trape-
zoidal formula (3.3), satisfies the inequality:

b—a)d N
-9 max (2. (3.4)

Irn(f)] <

4. The calculation of the integrals which appear in the successive approx-

imations methods, (3.3) [6]

Now we suppose that f € C%([0,7] x R), and in order to calculate the
integral ¢, from (3.1), we apply the formula (3.3). Then we divide the interval [0, T
by the points:

O=to<ti < - <tn=T (4.1)
where: t; =%_1+h, h= 2%, v=0,1,2,...,i=1,n,n= [%] ([-] is integer part).

Thus we have

ti
Pm(te) = - f(5,om-1(s))ds = (4.2)
= 5% f(tk = 7, m—1(te — 7)) + f(tk, Pm-1(tk)) + 2; s, me_l(ti))] +rmi(f),

where, for the remainder Tm k(f), we have the estimation:

max I[f(sx ‘Pm—l(s))]ls,l’ k= m) m € N.

Irmyk(f)l S 12712 36[0,7']

Taking into account the fact that:

2 s —1(s
s pmor (@l = T EmtlD) o T pmasDy )

2f(s, pm-1(s ’ 1 Pm-188))
e onall gy 4 2Lobmr@

and:
¢

Pm-1(t) = . f(3,om-2(s))ds

t Of(spmea(s)

/ —
¢m-1(t) - et s
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o= [ LIeemal)

t—r 0s?
and denoting by
_ 0% f(s,u)
M= |I<Ix1|?_<')§ dsxr gyea |’
s€[0,T]
ul<R
we obtain

lem_1 ()| < TM1; o1 () < ™M @i (8)] < My

again from here we have:

£ (s, pm-1(3))]5| < Mo (4-3)

where My = M) + 3T M + 72M3 and Mj does not depend on m and k.
For the remainder 7, & (f), from the formula (4.2) we have:

3

Irm,k(f)l S 12712

M,, m=0,1,2,..., k=0,n. (4.4)

In this way we have obtained a formula for the approximate calculation of

the integrals from (3.1).

5. The approximate calculation of the terms of the successive approxima-

tions sequence

Using the approximation (3.1) and the formula (4.2) with the remainder
estimation (4.4), we shall present further down an algorithm for the approximate
solution of equation (1.1).

So, we have:

<P1(tk)=/tk f(s,0(8))ds =

n-1
= -2% [f(tk — 7, p0(tk — 7)) + 2 ; f(ti,o(t:)) + f(te, po(te)) | + rie(f) =
= @u1(te) +rie(f), k=0,n
i) = [ Sl pn(ods = - [f(tk — e =) + ool +

tk—r
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n-1

42 f(ti, G1(8) + r1i(£)) + Flte, 1 te) + rl,n(.f)] +r24(f) =

i=1

= -2% [f(t;c —7,p1(te — 7)) +2 if(t,—,gbl(t.-)) + f(t,,,@l(tk))] + Fak(f) =

1=1

= @a(tk) + Fok(f)-

Observe that 72 k(f) = wa2(tk) — @2(tk).
Taking into account Theorem 2.2,(iv), and the remainder estimation given

by (4.4), we have:

n-1
72.6(F)| < —L [l"m(f)l + ) Ira(Hl+ l"l,n(f)l] +lr2x(Hl <

i=1

< T (T Mot (= 1) Mo+ o Mo ) + —oe Mo =
=2 122 0 12n2 2027°) T 1oz 0 T

T 73 3
= L o Mo(l+n—1+1)+ — Mo =
r3 [(n+ 1)7
- 12n2M0 | 2n

We continue in this manner, for m = 3, ..., by induction, and obtain:

3
L+1] < -ﬁn—z-Mo(TL-l" 1).

Om (k) = % Flte = 7, Pmer (th = 7) + Fmo1,0(f))+

n-—-1

42 f(ti, B (t) + Fm—14(F))+

i=1

+f(tk, Pm-1(tx) + f‘m-l,n(f))} +rmi(f) =

n-1

= 2Ln [f(tk — T, Pm-1(te — 7)) + 22 F(ti, Bm—1(t:)+

=1

+f(tk, Sz’m—l(tk))} + fm,k(f) = ¢m(tk) + Fm,k(f)’ k= 01 n
where
[Fm . (F)] = |‘Pm(tk) - Pm (k)| <
3
= 12n2

1‘4()[‘1"7"_ILm"1 +---+1], k=0,n
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or
73 1—7m[m My
< .
Fmi (I < Tz Mo—T—77~ < o2 = 71

In this way we got the sequence

(S‘sm(tk))meN, k=0,n

which approximates the sequence of successive approximation (3.1) on the knots (4.1),

with the error

~ TaMo :
lom (tk) — $m (te)| < i)’ (5.1)
By Picard’s theorem, (6], we have the following estimation
lp(th) = om (t)] < T - ||s00 ¢1lleo,n- (5.2)

In this way there was obtained the main result of our paper:
Theorem 5.1. Consider the integral equation (1.1) under the conditions of Theorems
2.1 and 2.2. If the ezxact solution ¢ is approzimated by the sequence (Pm(tk))meN,
k =0,n, on the knots (4{.1), by the successive approrimations method (3.1), combined
with the trapezoidal rule (3.3), then the following error estimation holds:

. I m—3 rm M,
o) = Gt S T [0 0 o — pillcnm + 1y (59

m=12..., k=0,n.

Proof. We have
le(te) — Em(te)l = le(te) = @m(tx) + m(te) — Bm(te)] <

< () = em(te)l + lom(tr) — Gm ()]
which, by virtue of formulae (5.1) and (5.2), can also be written

3M0

[o(te) — Gm (t)] S 1— ”‘PO ‘Pl”C[o T+ E‘T(T—_)

and, from here, it results immediately (5.3). The theorem is proved. O
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