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A N U M ER ICAL M ETHOD FOR APPROXIM ATINGTHE SOLUTION  
OF AN  INTEGRAL EQUATION FROM BIOMATHEMATICS

C .  I A N C U

A b stra ct. ’In lucrare se dă o metodă numerică unei ecuaţii integrale cu 
argument modificat, care modelează procesul de răspândire a unei infecţii. 
Rezultatul principal al lucrării este enunţat sub forma teoremei 5.1

1. Introduction

In the study of the problem which appears in the population dynamics, where 

certain periodical phenomena occur, the following integral equation holds:

x(t) =  f f (u y x(u))du} 1 E R  (1.1)
J t —  T

where /  E C (R  x R+) fulfils the condition of periodicity with respect to ty that is

f( t + u , x )  =  f ( t yx ), for 1 E R , x E R +, w > 0. (1.2)

If we suppose that r E R+ and

Ù < / ( / ,  x) < M, for t E R  and x E R+ (1.3)

then the problem of finding periodical solutions of equation (1.1) can be considered.

The equation (1.1) can be a mathematical model for the spreading of certain 

infectious diseases with a contact rate that varies seasonally. In this case x(t) repre

sents the proportion of the infectives in population at the time ty r is the time interval 

an individual remains infectious and f ( t yx(t)) represents the proportion of new in

fectives per unit time. In the papers [l]-[4], it is tackled this important problem and 

are given sufficient conditions for existence of non-trivial periodic nonnegative and 

continuous solutions of equation (1.1).
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On the basis of these results, the aim of this paper is to present a numerical 

method for obtaining the solutions of equation (1.1).

2. T he existence and uniqueness o f  solution

In [5] the following mapping is attached to equation (1.1):

A : X+ -> C{R),

which is defined by the right-hand side of (1.1), where

x +  =  { x e  x\ x{t) > o, (V) t e  R },

and

X  =  { x e  C(R)| *(t +  w) =  *(t), (V) t e  R }.

Because we have

(Æc)(f +  w) =  /  f(s,x(s))ds =  I f ( s + w ,x ( s + u ) ) d s  =
J t + U) — T J  t— T

=  f f(s,x(s))ds =  {Ax)(t)
J t - T

and

t -  t  < t, f  > 0,

it results that X+ is a invariant subset of A.

If we suppose that

|/(*,x) -  f(t,y)\ < a(t)\x -  y|, (V) t G R  and x, y e  R+ (2.1)

f a(s)ds < q < 1 for alH € R  (2.2)
Jt-T

then 4̂ is a contraction mapping.

The following result is given in [5]:

T heorem  2.1. If the conditions (1-2), (1.3), (2.1) and (2.2) are satisfied, then in 

C{ R , R+) the equation (1.1) has a unique periodic continuous nonnegative solution 
which can be obtained by the method of successive approximations.

Also, in [3], is proved the following theorem.
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Theorem 2.2. If the following assumptions are satisfied: (i) f ( t,x) is nonnegative 

and continuous for

- r < t < T  and x >  0, T  >  0

(ii) <j>{t) is continuous and 0 <  a <  <j>{t) foe —r <  t < 0 where the proportion <j)(t) of 
infectives in population is known for —r < t <  0, i.e.

=  <£(£), /or  — r <  t <  0

and

0 (0) =  6 = J f{s,<t>(s))ds

(Hi) there exists an integrable function g(t) such that f ( t,x) > g(t) for —t < t  < T , 

x >  a and

s > a for 0 < t  < T

(iv) there exists L >  0 such that

i f{t,y)\ < L\x-y\

for all t G [—r,T] and x ,y  G [a,oo), then equation (1.1) has a unique continuous 

solution x(t), x(t) > a, /or  —r < t < T ,  which satisfies the condition x(t) =  /or 

—r  <  t <  0; moreover,

max |æn(tf) — ar(t)| —>> 0 as n —> oo 
0 < £ < T  ' W  V n

where xn(t) =  /or  — r <  / < 0 (n =  0 ,1 ,2 ,. . . / ,  zo(tf) =  6 and xn(t) =

/ .f ( s , x n-i(s))ds,  0 < t  < T  ( n =  1,2, .. . ).
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3. The statement of the problem

We consider the nonlinear integral equation (1.1) and we suppose that the 

hypotheses of the Theorems 2.1 and 2.2 are satisfied. Then this equation has a unique 

solution on the interval [—r, T]. Let <p be the solution, which, by virtue of the theorem 

2.2, can be obtained by successive approximation method. So, we have

<p(t) =  <£(t), for t € [—r, 0) and for t G [0, T] 

we have :

<p0(t) =  *(0) =  b =  J  (8,4>(s))ds

<Pi ( i )=f  / (s,¥>o (s))d s  
J t - T

¥>2{ t ) =  /(8 ,p i(s ))d s
J t — T

<Pm{t) -  f /(s,¥>m_i(s))ds,
J t - T

(3.1)

To obtain the sequence of successive approximations (3.1), it is necessary to 

calculate the integrals which appear in the right-hand side. In general, this problem 

is difficult. We shall use the trapezoidal rule.

Let an interval [a, b] C R be given, and the function /  G C2[a) 6].

Divide the interval [a, 6] by the points

a =  x0 <  x\ < x2 <  • • • < xn =  b (3.2)

into n equal parts of length Ax  =  - — - .
n

Then we have the trapezoidal formula:

+ rn{f) (3.3)

where rn(f)  is the remainder of the formula.

To evaluate the approximation error of the trapezoidal formula there exists 

the following result.

L6 t , w  b - a
n-1

f (a )+ f ( b )  + 2 ^ 2 f ( Xi)
» = 1
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T heorem  4.1. For every function f  G C2[a,b], the remainder rn(f) from the trape- 

zoidal formula (3.3), satisfies the inequality:

M / ) l < !^ m S ] |/"(x)|. (3.4)

4. T he calculation o f  the integrals which appear in the successive approx

im ations m ethods, (3.3) [6]

Now we suppose that /  G C2([0,T] x R+), and in order to calculate the 

integral <pm from (3.1), we apply the formula (3.3). Then we divide the interval [0,T] 

by the points:

0 =  *0 < *i <  • • • < U =  T

where: ti — 1 -f- h, h =  — , v =  0 , 1 , 2 , . . . ,  i =  1 , n, n =z

(4.1)

([•] is integer part).

Thus we have
çtk

<Pm{tk) =  /  f(s, Ifm-l (s))ds =  
J t k- T

T
2 n

n — 1
f(tk -  T,<pm- i ( t k ~ T)) +  f(tk,<Pm-l{tk)) + 2'%2f(U,<Pm-l{U))

1=1

(4.2)

+  rmyk {f ) i

where, for the remainder rm)k(f ), we have the estimation:

km,* ( /)| <  î ^ ^ 0a^] l[^ ^ m -i(s ))] ,;|, k =  Ü7n, m G N. 

Taking into account the fact that:

r*/„ .. d2f{s,<pm-i(s))  o a2/(s ,^ m -i («))._,
=  ----------5^ ----------+  2--------------------------¥ >m -l(s ) +

+

ds2 ' “ dsdip

d2f(s,<pm-l{s))  , df(s,<fim-l{s)) J,
-Wm- M Y  +

and:

d92 r̂m — i \~// • Q(p

<pm- i { t ) =  f(s,<pm- 2{s))d.
J  t  —  T

v C -i(* )
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and denoting by

we obtain

v C -i  (* )=  f
J t - T

M\ — max

d*f(s,<pm- 2(s))
ds2

I daf{s,  w)

ds

\a\<2 \dsaidua2
a€ [0 ,T ]
|u|<ü

IPm-iWI < rAfr, Iv’m-iWI < t M i ; |y>"_i (<)| < rMi

again from here we have:

|[/(«, V’m -i(s))]"! <  Mo (4.3)

where Mo =  Mi +  3rM 2 +  r 2M f and Mo does not depend on m and fc.

For the remainder rmj/c(/), from the formula (4.2) we have:

7"̂  ___
km,k(/)| <  j ^ M o ,  m =  0 ,1 ,2 ,. . . ,  k =  0,n. (4.4)

In this way we have obtained a formula for the approximate calculation of 

the integrals from (3.1).

5. T he approxim ate calculation o f  the terms o f  the successive approxim a

tions sequence

Using the approximation (3.1) and the formula (4.2) with the remainder 

estimation (4.4), we shall present further down an algorithm for the approximate 

solution of equation (1.1).

So, we have:
rtk

<Pi(tk)= f(s,<po(s))ds =
Jtk- T

T
2 n

n — 1
f(tk -  r, <fi0{tk -  r)) +  2 ^ 2  f(U,<p(ti)) +  f{tk, y?o(ffc))

i= 1
+  n,k{f) =

-  <Pi{tk) +  n tk(f), k =  0,n
ftk j-

<P2 (ik) =  f(s,<pi{s))ds =  — f{tk -  T,<fi(tk -  t) +  ri,0( /) )+
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n — 1
+ 2  ^  +  r l,*(/ ))  +  f{tk ,<P l{tk) +  n ,n (/ )

i=l
+  r2f* ( /)  =

T

2n

n—1
/(<fc -  t, <pi{tk -  r)) +  2 ^  f(ti,<pi(U)) + f(tk, £i(*fc))

* = 1
+  r2|k (/) =

=  ^2(*fc) +  r2)* (/) .

Observe that f 2,* (/) =  y?2(tfc) -  <P2(tk)-

Taking into account Theorem 2.2,(iv), and the remainder estimation given 

by (4.4), we have:

\h,k(f)\ <  | K o(/)| +  £  |r1|t(/)| +  In,„(/)|] .+ |r2,*(/)| <
t= 1

-  TnL  ( î 5 ? " «  +  <”  *  « Î S ? " "  +  Î S ? " » )  +  Î ^ M»

=  S i ' î ^ M”(1 +  ’- I +  1) +  î ^ A,» =

12n2Mo
(n + 1  )r

2n T +  l <  Î2^2Mo (r I  +  l).

We continue in this manner, for m =  3 , . . . ,  by induction, and obtain:

<Pm(tk) =  ^ f{tk -  r, <pm-i(tk  -  r) +  rm_ i>0( / ) )+

n — 1
+2 ^  /(**, +  ^m -l,a(/))+

»=1

+ f(th ,< P m -l(tk ) +  rm- ! , „ ( / ) ) +  rm,fc(/) —

r
2n

n —1
f { tk  -  T, <pm- i ( t k  -  r)) +  2 /(*,', £m_l(t j))+

»=1

+ /(** , £m-l(*fc)) "I" ^mtk{f) — ^m(^) +  ?mtk{f)i k — 0, n

where

|f*m,fc(/)| ~  |^m(^/c) ~  Pm (̂ /c)| <

< ï ^ jM o [r m- 1I m- 1 +  . . . +  1], Jk =  M
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or

\rm,k(f)\ <
r 3 l -  rmLm r 3M0

12 n2 0 1 — rL 12n2(l  — r£ ) *
In this way we got the sequence

(^m M )m 6N ) h — 0,71

which approximates the sequence of successive approximation (3.1) on the knots (4.1), 

with the error

< î 5 ^ î j -  ‘ 5 1 >

By Picard’s theorem, [6], we have the following estimation
Tm ţm

M**) -  v>m(<*)| < l ^ r L Hy° “  V?i||c'[0,Tl- (5-2)

In this way there was obtained the main result of our paper:

Theorem 5.1, Consider the integral equation (1.1) under the conditions of Theorems 

2.1 and 2.2. If the exact solution is approximated by the sequence (y>m(M)m€N, 

k =  0,n, on the knots (4-1), by the successive approximations method (3.1), combined 
with the trapezoidal rule (3.3), then the following error estimation holds:

-  £m(<fc)| <  l l Ti

m =  1,2, . . k =  0,n.

M 0
Tm 3Lm\\<po -  <pl\\c[0,T) + (5.3)

Proof We have

\<p{tk) ~  <Pm(tk) I =  I <p{tk) ~ <f>m{tk) +  <Pm{tk) ~  <Pm{tk) | <

^  M * f c )  ^m(^/s)| ItPmifk) <Pm{tk)\

which, by virtue of formulae (5.1) and (5.2), can also be written

M**) -  M *k )I < f r T ï l l^0 “ HIcfo.T] + l2n ^ i l TL)

and, from here, it results immediately (5.3). The theorem is proved. □
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