THE CONTINUITY OF THE METRIC PROJECTION OF A FIXED POINT ONTO MOVING CLOSED-CONVEX SETS IN UNIFORMLY-CONVEX BANACH SPACES

ANDRÁS DOMOKOS

We will show that a result similar to Hölder continuity in Hilbert spaces of the metric projections of a fixed point onto a pseudo-Lipschitz continuous family of closed convex sets [6] holds for uniformly-convex Banach spaces. The continuity of the metric projections with respect to perturbations play an important role in the sensitivity analysis of variational inequalities in Hilbert spaces [1, 3, 4, 6, 7] and hence in a wide range of nonlinear optimization, evolution and boundary value problems. The results from this paper offer us the possibility of extending the studies involving the metric projections in a larger class of spaces.

We denote by (Λ, d) a metric space and by X a uniformly-convex Banach space. We suppose X^* locally-uniformly-convex. Let $\omega_0, x_0 \in X, \lambda_0 \in \Lambda$, and their neighborhoods $\Omega_0 = B(\omega_0, r)$ (the closed ball centered at ω_0 and radius r) of ω_0, Λ_0 of λ_0 . Let $C : \Lambda_0 \rightsquigarrow X$ be a set-valued mapping with nonempty, closed, convex values. Let us consider the following problem:

- for $\lambda \in \Lambda_0$ and $\omega \in \Omega_0$ find $x(\omega, \lambda) = P_{C(\lambda)}(\omega) \in C(\lambda)$ such that

$$||\omega - x(\omega, \lambda)|| = \min_{x \in C(\lambda)} ||\omega - x||.$$
(1)

In our context such an element exists for all $\omega \in \Omega_0$ and $\lambda \in \Lambda_0$ and satisfies

$$\langle J(\omega - x(\omega, \lambda)), x - x(\omega, \lambda) \rangle \leq 0, \quad \forall x \in C(\lambda),$$
 (2)

where J is the normalized duality mapping.

(2) is equivalent with

$$0 \in -J(\omega - x(\omega, \lambda)) + N_{C(\lambda)}(x(\omega, \lambda)), \qquad (3)$$

where

$$N_{C(\lambda)}(x) = \{x^* \in X^* : \langle x^*, y-x \rangle \leq 0, \ \forall \ y \in C(\lambda)\}$$

is the normal cone to the set $C(\lambda)$ at the point x.

Hence we need to study the sensitivity with respect to λ of the following generalized equation:

$$0 \in -J(\omega - x) + N_{C(\lambda)}(x) . \tag{4}$$

For Theorem 1 it is enough to consider (Ω, d) be a metric space, $\omega_0 \in \Omega$ and Ω_0 be a neighborhood of ω_0 . Let $f: X_0 \times \Omega_0 \to X^*$ be a single-valued mapping.

Definition 1. The mappings $f(\cdot, \omega)$ are φ -monotone on X_0 for all $\omega \in \Omega_0$, if there exists an increasing function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$, with $\varphi(r) > 0$ when r > 0, such that

$$\langle f(x_1,\omega) - f(x_2,\omega), x_1 - x_2 \rangle \geq \varphi(||x_1 - x_2||)||x_1 - x_2||,$$

for all $x_1, x_2 \in X_0$ and $\omega \in \Omega_0$.

The following proposition shows that the φ -monotonicity assumption is a natural one in uniformly-convex Banach spaces.

Proposition 1. [5] A Banach space X is uniformly-convex if and only if for each R > 0 there exists an increasing function $\varphi_R : \mathbf{R}_+ \to \mathbf{R}_+$, with $\varphi_R(r) > 0$ when r > 0, such that the normalized duality mapping $J : X \to X^*$, defined by

$$J(x) = \{ x^* \in X^* : \langle x^*, x \rangle = ||x||^2, ||x|| = ||x^*|| \},\$$

is φ_R -monotone in B(0, R).

Definition 2. C is pseudo-continuous around $(\lambda_0, x_0) \in \operatorname{Graph} C$ if there exist neighborhoods $V \subset \Lambda_0$ of λ_0 , $W \subset X_0$ of x_0 and there exists a function $\beta : \mathbb{R}_+ \to \mathbb{R}_+$ continuous at 0, with $\beta(0) = 0$, such that

$$C(\lambda_1) \cap W \subset C(\lambda_2) + \beta \left(d(\lambda_1, \lambda_2) \right) B(0, 1)$$
(5)

for all $\lambda_1, \lambda_2 \in V$.

If the function β is defined as $\beta(r) = Lr$, with $L \ge 0$, ([2]) then we say that C is pseudo-Lipschitz continuous around (λ_0, x_0) .

Theorem 1. Let us suppose that:

a) $0 \in f(x_0, \omega_0) + N_{C(\lambda_0)}(x_0);$

b) f is continous on $X_0 \times \Omega_0$;

c) the mappings $f(\cdot, \omega)$ are φ -monotone in X_0 for all $\omega \in \Omega_0$;

d) C is pseudo-continuous around (λ_0, x_0) .

Then there exist neighborhoods Λ_1 of λ_0 , Ω_1 of ω_0 and a unique continuous mapping $x : \Omega_1 \times \Lambda_1 \to X_0$, such that $x(\omega_0, \lambda_0) = x_0$ and $x(\omega, \lambda)$ is a solution of the variational inequality

$$0 \in f(x,\omega) + N_{C(\lambda)}(x)$$

for all $(\omega, \lambda) \in \Omega_1 \times \Lambda_1$.

Proof. Let us note that assumptions b), c) imply that $\varphi(r) \to 0$, $\varphi(r)r \to 0$ iff $r \to 0$. We choose positive constants s, r, ε such that $B(x_0, s) \subset X_0$, $B(\lambda_0, \varepsilon) \subset \Lambda_0$, $B(\omega_0, r) \subset \Omega_0$, $\beta(d(\lambda, \lambda_0)) \leq s$ for all $\lambda \in B(\lambda_0, \varepsilon)$ and the pseudo-continuity of C to be written as:

$$C(\lambda_1) \cap B(x_0,s) \subset C(\lambda_2) + \beta(d(\lambda_1,\lambda_2)) B(0,1)$$

for all $\lambda_1, \lambda_2 \in B(\lambda_0, \varepsilon)$.

Let $\lambda \in B(\lambda_0, \varepsilon)$ and $\omega \in B(\omega_0, r)$ be arbitrarily choosen. Then the inclusion

$$x_0 \in C(\lambda_0) \cap B(x_0, s) \subset C(\lambda) + Ld(\lambda, \lambda_0) B(0, 1)$$

implies the existence of an $u_{\lambda} \in C(\lambda)$ such that

$$||x_0 - u_\lambda|| \leq \beta(d(\lambda, \lambda_0)) \leq s$$

This means that $C(\lambda) \cap B(x_0, s)$ is nonempty for all $\lambda \in B(\lambda_0, \varepsilon)$. Corollary 32.35 from [8] shows that the variational inequality

$$0 \in f(x,\omega) + N_{C(\lambda) \cap B(x_0,s)}(x)$$

has a unique solution $x(\omega, \lambda) \in C(\lambda) \cap B(x_0, s)$. So

$$\langle f(x(\omega,\lambda)\,,\,\omega)\,,\,u-x(\omega,\lambda)
angle\,\geq\,0$$

for all $u \in C(\lambda) \cap B(x_0, s)$.

The pseudo-Lipschitz continuity of the set-valued mapping C implies that for $x(\omega, \lambda)$ there exists an element $u_0 \in C(\lambda_0)$ such that $||x(\omega, \lambda) - u_0|| \leq \beta(d(\lambda, \lambda_0))$. Using the φ -monotonicity of $f(\cdot, \omega)$ we obtain

$$\begin{split} \varphi\left(||x(\omega,\lambda)-x_{0}||\right) ||x(\omega,\lambda)-x_{0}|| \leq \\ \leq \left\langle f(x(\omega,\lambda),\omega)-f(x_{0},\omega), x(\omega,\lambda)-x_{0}\right\rangle \leq \\ \leq \left\langle f(x(\omega,\lambda),\omega)-f(x_{0},\omega), x(\omega,\lambda)-x_{0}\right\rangle + \left\langle f(x_{0},\omega_{0}), u_{0}-x_{0}\right\rangle + \\ + \left\langle f(x(\omega,\lambda),\omega), u_{\lambda}-x_{0}\right\rangle + \left\langle f(x_{0},\omega), u_{0}-x(\omega,\lambda)\right\rangle + \\ + \left\langle f(x_{0},\omega_{0})-f(x_{0},\omega), u_{0}-x_{0}\right\rangle \leq \\ \leq \left\| f(x(\omega,\lambda),\omega) \right\| \left\| u_{\lambda}-x_{0} \right\| + \left\| f(x_{0},\omega) \right\| \left\| u_{0}-x(\omega,\lambda) \right\| + \\ + \left\| f(x_{0},\omega_{0})-f(x_{0},\omega) \right\| \left\| u_{0}-x_{0} \right\| . \end{split}$$

Assumption a) implies that $||f(x_0, \omega_0)|| < \infty$, and hence using the continuity of f, we can suppose that $||f(x, \omega)|| \le M < \infty$, for all $x \in B(x_0, s)$ and $\omega \in B(\omega_0, r)$. We know also that

$$\begin{aligned} \|u_0-x_0\| &\leq \|u_0-x(\omega,\lambda)\| + \|x(\omega,\lambda)-x_0\| &\leq \\ &\leq \beta(d(\lambda,\lambda_0)) + s \ . \end{aligned}$$

So,

$$\begin{split} \varphi\left(\|x(\omega,\lambda)-x_0\|\right) \|x(\omega,\lambda)-x_0\| &\leq \\ &\leq 2M\beta(d(\lambda,\lambda_0)) + \|f(x_0,\omega_0)-f(x_0,\omega)\|(\beta(d(\lambda,\lambda_0))+s) \end{split}$$

This means that $x(\omega, \lambda) \to x_0$, when $(\omega, \lambda) \to (\omega_0, \lambda_0)$. Thus we can choose neighborhoods $\Omega_1 \subset B(\omega_0, r)$ of ω_0 and $\Lambda_1 \subset B(\lambda_0, \varepsilon)$ of λ_0 such that $x(\omega, \lambda) \in int B(x_0, s)$, for all $(\omega, \lambda) \in \Omega_1 \times \Lambda_1$. Hence

$$0 \in f(x(\omega, \lambda), \omega) + N_{C(\lambda)}(x(\omega, \lambda)),$$

because

$$N_{C(\lambda)}(x(\omega,\lambda)) = N_{C(\lambda)\cap B(x_0,s)}(x(\omega,\lambda))$$

for all $(\omega, \lambda) \in \Omega_1 \times \Lambda_1$.

Let us choose $\lambda_1, \lambda_2 \in \Lambda_1$ and $\omega_1, \omega_2 \in \Omega_1$.

For $x(\omega_1, \lambda_1) \in C(\lambda_1) \cap B(x_0, s)$ there exists $u_2 \in C(\lambda_2)$, such that

$$||x(\omega_1,\lambda_1)-u_2|| \leq \beta(d(\lambda_1,\lambda_2))$$
.

For $x(\omega_1, \lambda_2) \in C(\lambda_2) \cap B(x_0, s)$ there exists $u_1 \in C(\lambda_1)$ such that

$$||x(\omega_1,\lambda_2)-u_1|| \leq \beta(d(\lambda_1,\lambda_2))$$

Then

Hence we obtain that $x(\omega_1, \lambda_1) \to x(\omega_1, \lambda_2)$, when $\lambda_1 \to \lambda_2$, uniformly for all $\omega_1 \in \Omega_1$. We have also that

•

$$egin{aligned} &arphi\left(\|x(\omega_1,\lambda_2)-x(\omega_2,\lambda_2)\|
ight)\,\|x(\omega_1,\lambda_2)-x(\omega_2,\lambda_2)\|
ight) \leq \ &\leq \langle f(x(\omega_1,\lambda_2)\,,\,\omega_1)-f(x(\omega_2,\lambda_2)\,,\,\omega_1)\,,\,x(\omega_1,\lambda_2)-x(\omega_2,\lambda_2)
angle \ &+ \langle f(x(\omega_1,\lambda_2)\,,\,\omega_1)\,,\,x(\omega_2,\lambda_2)-x(\omega_1,\lambda_2)
angle \ &+ \ \end{aligned}$$

$$+ \langle f(x(\omega_2,\lambda_2),\omega_2), x(\omega_1,\lambda_2) - x(\omega_2,\lambda_2) \rangle =$$

= $\langle f(x(\omega_2,\lambda_2),\omega_2) - f(x(\omega_2,\lambda_2),\omega_1), x(\omega_1,\lambda_2) - x(\omega_2,\lambda_2) \rangle \leq$
 $\leq ||f(x(\omega_2,\lambda_2),\omega_2) - f(x(\omega_2,\lambda_2),\omega_1)||||x(\omega_1,\lambda_2) - x(\omega_2,\lambda_2)||.$

Thus $x(\omega_1, \lambda_2) \to x(\omega_2, \lambda_2)$, when $\omega_1 \to \omega_2$.

The two convergence imply the continuity of $x(\cdot, \cdot)$ at (ω_2, λ_2) . This point being choosed arbitrarily the continuity hold in $\Omega_1 \times \Lambda_1$.

As a corollary of the previous theorem we can prove the continuity of the metric projection with respect to perturbations.

Let $\Omega = X$ and $\omega_0 \in X$.

Corollary 1. Let us suppose that:

i)
$$x_0 = P_{C(\lambda)}(\omega_0);$$

ii) C is pseudo-continuous around (λ_0, x_0) .

Then there exists neighborhoods Ω'_0 of ω_0 , Λ'_0 of λ_0 , such that $x(\cdot, \cdot) = P_{C(\cdot)}(\cdot)$ is continuous on $\Omega'_0 \times \Lambda'_0$ and hence $x(\omega, \cdot) = P_{C(\cdot)}(\omega)$ is continuous on Λ'_0 for all $\omega \in \Omega'_0$.

Proof. In the case of a uniformly-convex Banach space with locally-uniformly convex dual the normalized duality mapping is single-valued, φ -monotone on each closed-ball and continuous from the strong topology of X to the strong topology of X^* .

So, we can define the mapping $f(x, \omega) = -J(\omega - x)$ and we can use Theorem 1 to prove the continuity of $x(\cdot, \cdot)$ on $\Omega'_0 \times \Lambda'_0$.

Hence for all $\omega \in \Omega'_0$ the metric projections $P_{C(\lambda)}(\omega)$ vary continuously with respect to λ on Λ'_0 .

As we have seen, even when C is pseudo-Lipschitz continuous, this continuity is not the same $\frac{1}{2}$ -Hölder type as in [6], because the normalized duality mapping is not strongly-monotone in a general uniformly-convex Banach spaces.

In the case of a Hilbert space, the $\frac{1}{2}$ -Hölder-continuity with respect to λ is a consequence of Theorem 1 and Corollary 1.

References

- W. Alt and I. Kolumbán, Implicit function theorems for monotone mappings, Kybernetika 29 (1993), 210-221.
- [2] J. P. Aubin and H. Frankowska, "Set-valued analysis", Birkhäuser, 1990.
- S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988), 421-434.
- [4] R. N. Mukherjee and H. L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992), 299-304.
- [5] J. Prüß, A characterization of uniform-convexity and application to accretive operators, *Hiroshima Math. J.* 11 (1981), 229-234.
- [6] N. D. Yen, Hölder continuity of solutions to a parametric variational inequality, Appl. Math. Optim. 31 (1995), 245-255.
- [7] N. D. Yen and G. M. Lee, Solution sensitivity of a class of variational inequalities, J. Math. Anal. Appl. 215 (1997), 48-55.
- [8] E. Zeidler, "Nonlinear Functional Analysis and its Applications", II/b, Springer-Verlag, 1990.

BABES-BOLYAI UNIVERSITY, DEPT. OF MATHEMATICS, 3400 CLUJ-NAPOCA, STR. M. KOGALNICEANU 1, ROMANIA