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THE CONTINUITY OF THE METRIC PROJECTION OF A FIXED
POINT ONTO MOVING CLOSED-CONVEX SETS IN
UNIFORMLY-CONVEX BANACH SPACES

ANDRAS DOMOKOS

We will show that a result similar to Holder continuity in Hilbert spaces
of the metric projections of a fixed point onto a pseudo-Lipschitz continuous family
of closed convex sets [6] holds for uniformly-convex Banach spaces. The continuity
of the metric projections with respect to perturbations play an important role in the
sensitivity analysis of variational inequalities in Hilbert spaces [1, 3, 4, 6, 7] and hence
in a wide range of nonlinear optimization, evolution and boundary value problems.
The results from this paper offer us the possibility of extending the studies involving
the metric projections in a larger class of spaces.

We denote by (A, d) a metric space and by X a uniformly-convex Banach
space. We suppose X* locally-uniformly-convex. Let wg,z0 € X, Ao € A, and their
neighborhoods Q¢ = B(wo, ) (the closed ball centered at wg and radius r) of wo, Ag of
Xo. Let C : Ag ~ X be a set-valued mapping with nonempty, closed, convex values.
Let us consider the following problem:

- for A € Ag and w € Qp find z(w, A) = Pc(x)(w) € C(A) such that

o = 2@, Il = min Jlw— 2]l (1)
In our context such an element exists for all w € Qp and A € Ap and satisfies

(Jw=-2w,A),z-2(w,A) <0, VzeC(), (2)

where J is the normalized duality mapping.

(2) is equivalent with

0 € —J(w _z("‘”A)) + NC(A)(:"(“’”\)) ) (3)
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where
Nepy(@) = {s" € X* : (2", y—2) <0, VyeC(N)}
is the normal cone to the set C(\) at the point z.

Hence we need to study the sensitivity with respect to A of the following generalized

equation:
0 € —J(w—12) + Ncpy(z) - 4)

For Theorem 1 it is enough to consider (2, d) be a metric space, wg €  and o be a

neighborhood of wg. Let f: X x Qo — X* be a single-valued mapping .

Definition 1. The mappings f(-,w) are p-monotone on X, for all w € Qo, if there

exists an increasing function ¢ : Ry — Ry, with o(r) > 0 when r > 0, such that

(f(21,0) = f(z2,w), 21 — z2) > @(lle1 — zafl)||21 — 22l ,

for all z1,25 € Xo and w € Q.

The following proposition shows that the p-monotonicity assumption is a

natural one in uniformly-convex Banach spaces.

Proposition 1. [5] A Banach space X is uniformly-convez if and only if for each
R > 0 there exists an increasing function pp : Ry — Ry, with pr(r) > 0 when
r > 0, such that the normalized duality mapping J : X ~ X*, defined by

J) = {z" e X" : &, ) = ||z, l2ll = lle*]| } ,
is pr-monotone in B(0, R).

Definition 2. C is pseudo-continuous around (Ao, zo) € GraphC if there exist neigh-
borhoods V. C Ag of Ao, W C Xo of zo and there ezists a function # : Ry — Ry
continuous at 0, with 8(0) =0, such that

CAM)NW C CG(A2) + B(d(A1,A2)) B(0,1) (5)
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forall M, 2 €V.
If the function B is defined as B(r) = Lr, with L > 0, ([2]) then we say that C' is

pseudo-Lipschitz continuous around (Ao, zo).

Theorem 1. Let us suppose that:

a) 0 € f(zo,wo) + Ne(ro)(%o);

b) f is continous on Xy x Qo;

c) the mappings f(-,w) are p-monotone in Xy for all w € Qo;

d) C is pseudo-continuous around (Ao, zo).

Then there exist neighborhoods A1 of Ag, 21 of we and a unique continuous mapping
z : Q) x Ay = Xo, such that £(wg, Ao) = zo and z(w, \) is a solution of the variational

inequality
0 € f(z,w) + Ney(2),

fOT all (w,A) €Qy x Ar.

Proof. Let us note that assumptions b), ¢) imply that ¢(r) = 0, ¢(r)r =0
iff » — 0. We choose positive constants s, r, € such that B(zg, s) C Xo, B(Xo,€) C Ao,
B(wo,r) C Qo, B(d(A, Ag)) < s for all A € B(\g, €) and the pseudo-continuity of C' to

be written as:

C(A1) N B(zo,s) C C(A2) + B(d(A1,A2)) B(0,1)

for all A1, A2 € B(Xo,¢€).
Let A € B(\g,€) and w € B(wg, r) be arbitrarily choosen. Then the inclusion

rg € C(/\o) N B(.’Bo, 8) C C(/\) + Ld(/\,/\o) B(O, 1)
implies the existence of an uy € C(A) such that

llzo — wall < B(d(A, X)) < 5.
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This means that C(A) N B(zo, s) is nonempty for all A € B(Ag,¢). Corollary 32.35
from [8] shows that the variational inequality
0 € f(z,w) + NopynB(eo,s)(®)
has a unique solution z(w, A) € C'(A\) N B(zo, s). So
(f(@(w,)), w), u—z(w,A)) > 0

for all u € C(A) N B(xo, s).
The pseudo-Lipschitz continuity of the set-valued mapping C implies that for z(w, A)
there exists an element ug € C(Ag) such that ||z(w,A) — uo|| < B(d(A, Ao))-

Using the p-monotonicity of (- w) we obtain

¢ (llz(w, A) = zoll) lle(w, A) — zoll <

< {f(=(w, ), w) = f(zo,w), z(w,A) — z0) <
< (fzWw, ), w) = f(zo,w), 2(w,A) — 20) + (f(2o,wo), uo — z0) +
+ (f(z(w,A), w), ur — z(w,N)) =
= (f(zw,A), W), ux — o) + (f(zo,w), uo — z(w,A)) +
+ (f(z0,wo) — f(z0,w) , uo — To) <
< (2w, A), W)l lua = zol| + I (zo, W)l o — 2(w, M| +

+ | f (20, wo) — f(zo,w)||{|uo — o] -
Assumption a) implies that ||f(zo, wo)|| < 0o, and hence using the continuity of f, we
can suppose that ||f(z,w)]| < M < co, for all z € B(zo,s) and w € B(wo, r).
We know also that

lluo — 2oll < lluo — 2(w, M)l + ||z(w, A) — zol| <
< B(d(X X)) +5.

So,

p (llz(w, A) = zoll) llz(w, A) = zol| <

< 2MB(d(A, Xo)) + |If(z0,wo) = f(zo,w)|[(B(d(A, Ao)) + 5) -
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This means that (w, A) = 2o, when (w, A) — (wq, Ag). Thus we can choose neighbor-
hoods Q1 C B(wo,r) of wo and Ay C B(Ao,¢€) of Ag such that z(w, A) € intB(zo, s),
for all (w,A) € 21 x A;. Hence
0 € f(z(w,)),w) + Nepy(z(w, ),
because
Nepy(z(w,A)) = NeynB(ze,s) (2w, A)) ,
for all (w, A) € 2y x A;.
Let us choose A1, Az € Ay and wy,ws € £;.
For z(w1, A1) € C(A) N B(zo, s) there exists us € C(\z), such that
llz(wi, A1) = uall < B(d(A1,A2)) -
For z(w1, A2) € C(A2) N B(zo, s) there exists u; € C(\;) such that

lz(w1, A2) —wal| < B(d(A1, A2)) -
Then
@ (lz(ws, A1) = z(wa, A2)ll) le(ws, A1) — z(ws, A2)l| <
< (flz(wi, M), wi) = fz(wi, A2), wi), 2(wi, M) = 2(wi, X)) +
+ (f(z(wi, A1), w1), u1 —z(w1, A1) +
+ (f(@(w1,A2), w1), w2 — 2wy, A2)) =
= (f(e(wi, A1), w1), u1 — (w1, A2)) +
+ (f(z(w1, A2), w1) , ug — z(wi, A1) <
< 2MB(d(A1, Az2)) -

Hence we obtain that z(w;, A1) = z(w1, A2), when A\; — Az, uniformly for allw; € Q.
We have also that

¢ (llz(wr, A2) — 2(w2, A2)|I) llz(wi, A2) — 2(w2, A2)|| <

< (flz(wi, A2), wi) = f(z(w2, A2) , w1), (w1, Az) — z(w2, A2)) +

+ (f(z(wl”\?') ) wl) ) z(w% A2) - z(wl:’\2)> +
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+ (f(z(w2, A2),w2) , (w1, A2) — 2(w2, A2)) =
= (f(z(w2, A2),ws) — f(z(w, A2),w1), z(w1, A2) — z(w2,A2)) <
< f(@(wa, Az), wa) = f(z(wz, A), wi)lll|e(ws, A2) — 2wz, A2)ll -
Thus z(wi, A2) = (w3, A2), when wy — ws.
The two convergence imply the continuity of z(-,-) at (wz,A2). This point being

choosed arbitrarily the continuity hold in ©Q; x A;.

As a corollary of the previous theorem we can prove the continuity of the
metric projection with respect to perturbations.

Let Q = X and wp € X.

Corollary 1. Let us suppose that:

i) o = Pc(r)(wo);

i) Cis pseudo-continuous around (Ao, Zo).

Then there exists neighborhoods Qf of wo, Ay of Ao, such that z(-,-) = Pc()(-) is
continuous on Qp x Ay and hence z(w,-) = Pc()(w) is continuous on Aj for all

w € Q.

Proof. In the case of a uniformly-convex Banach space with locally-uniformly
convex dual the normalized duality mapping is single-valued, p-monotone on each
closed-ball and continuous from the strong topology of X to the strong topology of
X*.

So, we can define the mapping f(z,w) = —J(w —z) and we can use Theorem
1 to prove the continuity of z(-,-) on Qf x Ag.

Hence for all w € Q the metric projections Pc(x)(w) vary continuously with respect
to A on Ag.

As we have seen, even when C is pseudo-Lipschitz continuous, this continuity
is not the same %—Hélder type as in [6], because the normalized duality mapping is
not strongly-monotone in a general uniformly-convex Banach spaces.

In the case of a Hilbert space, the %-Hélder—continuity with respect to A is a conse-
quence of Theorem 1 and Corollary 1.
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