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R IG ID ITY  OF HARM ONIC M EASURE OF TOTALLY 
DISCONNECTED FRACTALS

Z O L T À N  M . B A L O G H

A bstract. Let /  : V -¥ U be a generalized polynomial-like map. Suppose 
that harmonic measure u =  u>(-, oo) on the Julia set J/ is equal to measure 
of maximal entropy p for /  : Jf Then the dynamics ( / , V, U) is called 
maximal. We are going to give a necessary condition for the dynamics 
to be conformally equivalent to a maximal one, that is to be conformally 
maximal. Namely the purpose of the paper is to prove that if the Julia 
set is totally disconnected then u> «  /i implies that the system ( /, U, V) 
is conformally maximal. This shows that maximal systems are natural 
substitutes for polynomials in the class of genereralized polynomial-like 
mappings.

0. In troduction

Let /  : C —> C be a polynomial of degree d. A result of H. Brolin (see [Br]) 

says that the backward orbits of /  are equidistributed with respect to the measure 

(jj : the harmonic measure on the boundary of the domain of attraction to oo and 
evaluated at oo.

Almost twenty years later the ergodic theory of rational maps has started by 

the works of M. Lyubich ([Lyl], [Ly2]) and independently by A. Freire, A. Lopes and

R. Mane ([FLM], [Mai]). It was established that for any rational map /  : C —> C 

there is a unique /  -invariant probability measure on the Borel cr-algebra such that:

p{f(E) = d'(t{E) (0.1)

for any Borel set E  such that / | e is injective. The measure // is the unique /-invariant 

probability measure that maximizes the entropy i.e. h^(f) = log d. In the light of
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these works Brolin’s result can be interpreted as the fact that for polynomials we have

UJ =  fi.

Conversely A. Lopes proved in [Lo] that if we have a rational map /  : C —> C 
such that uj = fi (where uj is the harmonic measure on the boundary of an attracting 

forward invariant component of the Fatou set) then /  is conjugated to a polynomial 

by a Môbius transformation* A simpler proof of this result was given in [MR].

The purpose of this paper is to extend the result of Lopes to the class of 
generelized polynomial-like mappings. Let us recall this definition from [BPV], [BV1], 

[BV2].

We will be considering triples (/, where U is a topological disc and

V =  Vi U • • • U Vk is the union of topological discs whose closures are disjoint and are 

contained in U. Also /,• := f\Vi is a regular or branched covering Vi —¥ U of degree d,

(so “regular” means that d* = 1). By d = d\ -f----- [*dfc we denote the degree of the

map f  : V U. These dynamical systems will be called generalized polynomial-like 

systems or GPL. The limit set (= Julia set) is Jf = d K f , where Kf = Ç)n>of~n(U) 

is the filled Julia set.

If k =  1, d > 2, we come to a class of polynomial-like systems (PL) introduced 
in [DH] and playing an important role in classification of polynomial dynamics.

Being GPL means to be quasiconformally equivalent to a polynomial:

/  G GPL => 3 h G qc(U) : /  = h~l o poly o h.

The starting point is to see whether the result of Lopes is true under the 

weaker assumption lj & fi. Here means that uj and fi are mutually absolutely 
continuous and in addition to that we assume that there exists M  > 0 such that for 

any x G J  and r > 0:

_L < li(B(x,r)) 
M ~ u>(B(x,r)) < M. (0 .2)
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In other words we ask the following question: is it true that if for a GPL 

(/, {/, V) we have u; «  /z does it follow that (/, t/, V) is conformally conjugated to a 

polynomial?
This is a rigidity-type question aiming to rule out quasiconformal deforma

tions.

RIGIDITY OF HARMONIC MEASURE OF TOTALLY DISCONNECTED FRACTALS

The converse is obviously true: if our GPL is conformally conjugated to a 

polynomial then by Brolin’s result and Harnack’s inequality we obtain u æ //.
It is quite a suprise to see that the answer to this question is generally neg

ative. This was shown by M. Lyubich and A. Volberg. Namely a GPL (/, {/, V) 

was constructed in [LyV] where /i = u but /  is not conformally conjugated to a 

polynomial.

To formulate the appropriate question for the class of GPL we call a GPL 

system (/,£/, V) maximal if pj = wj. Maximal GPL systems have been introduced 

in [BPV] as natural substitues for polynomials.

Next we call a GPL system (/, U, V) conformally maximal if it is conformally 

equivalent to a maximal system; that is:

f  = H~1ogoH ,

where H : Uj — Ug is a conformal map and (g, Ug) Vg) is a maximal system.

In this paper we are going to prove the following rigidity result:

Theorem  4.1 Let (/, U, V) be a GPL with totally disconnected Julia set. Then 

u)f  » / i /  implies that (/, U, V) is conformally maximal.

The converse of this result follows immediately by Harnack’s inequality.

A weaker form of Theorem 4.1 under the condition of semihyperbolicity of /  

was proved in [BPV]. Also in [BPV] it was explained that this result is an analog of a 

theorem of Shub and Sullivan (see [SS]) on ’’wild” (i.e. totally disconnected) Jj and 
nonexpanding / .
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1. Idea of proof.

Let us start with the following criterion of conformal maximality proven in

[BPV]:

Theorem  A Let (/, V, U) be a GPL system. Two assertions are equivalent:

1) (/,Y ,t/) is conformally maximal;

2) there exists a non-negative subharmonic function r on U> which is positive 

and harmonic in U \ K j , vanishes on K f and satisfies

r(fz)  = dr(z). (Aut)

If v is an arbitrary probability measure on Jj then a general theorem [Pa], 

says that there exists Jacobian J„ =  Ju{f) on a set of full measure v. It means that 

there exists Y C J, i/( J  \  Y) =  0, and a-v integrable function «/„ such that for every 
E  C Y on which /  is 1-to-l onto f (E)  we have i/(f(E)) =  $E Judv. By (0.1) the 

Jacobian of p. is =  d. We denote the Jacobian of the harmonic measure by Ju .

For a better exposition I would like to sketch the strategy of the approach in

[BPV]:

-if the dynamics /  is semihyperbolic and J  is totally disconnected the function 

y(x) = log Jw(x) is Holder continuous on J,

-Holder continuity of <p together with u  «  p is used to prove that there exists 

a Holder continuous function u : J  —> R  satisfying the homologous equation:

<p(x) — log d=  u(fx)  — u(x) Væ E J, (1.1)

-starting from (1.1) we can build an automorphic function r  as required by 

Theorem A to prove conformal maximality of (/, 17, V). •

In our more general case we do not have the Holder continuity of ip =  log Jw. 

Therefore the above approach based on thermodynamic formalism is not applicable. 

Still we have a modified strategy as follows:
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-Pesin theory gives a certain regularity property of y?,

-we consider the function <j> =  <p — log d and the sequence of random variables 

{</> ° f k}k on the probability space ( J, /*),
-a; «  /i implies that fj<j> dp = 0,

-using a technique from [DPU] it follows that the sequence {<f> o /*}*•obeys 

the law of Central Limit Theorem or CLT

- applying CLT we obtain a function u G L2(p) satisfying the homologous 

equation:

<p(x) — log d = u(fx) — u(x) for p a.e. x E J, (1.2)

-staring from (1.2) we can construct again the automorphic function r  re

quired by Theorem A.

2. Jacobian of th e  harm onic m easure.

In this section we study regularity properties of the function (p = log Ju . Our 
first ingredient is a result of F. Grishin (see [Gr]):

Lem ma B Let oo ^ K  C C be a compact set and denote by u the harmonic measure 

in C \ K  evaluated at oo. Let O be an open set containing K and let u , v > 0 be two 
continuous subharmonic function; positive and harmonic in 0 \ K  and vanishing on

K. Let us suppose that the limit:

u{z)
p(x) =  lim — exists for u a.e. x G dK .

z l o \ K

Then we have that dpu = pdpv where pu and pv denote the Riesz measures 

of u and v.

In our applications we put K — J y O = U ,u  — G o f  and v =  G, where G 

is Green’s function of C \  J  with pole at oo.
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Let us suppose for the moment that the limit lim z-+?j Gg(ï ) ex^ s f°r ^  a-e-z e u \ j
x e J -  Using that u) =  AG, u o /  =  A(G o /)  Lemma B gives : 

Ju>(x) = lim ^  f  for w a.e. x € J
z ^ J

To establish the existence of the above limit we introduce:

(2 .1 )

Definition 2.1 Let K  C C and O be as in Lemma B and let us fix a number j3 > Û. 

We say that a set E  C O is k-nested if there exist annuli {Ai}k=1 with the properties:

(1) modAi > f3 ,

(2) Ai C O \  K  ,

(3) E  C inAk C inA k-i C . . .  C inA\ ,

where inA{ denotes the component of C \  Ai containing E .

The existence of the limit in (2.1) will be based on the following result called 

Boundary Harnack Principle (see [MaV] or [BV2] for the proof):

Lemma C Let K, O, u, v be as in Lemma B and /3 > 0 be fixed. There exist 

C > 0 , 0 < q < l  depending only on K and j3 > 0 such that if E  C O is k-nested we 

have :

log u ( x )

v(æ) - lo g tt(y)
v(y)

< C - q k Vx, y € E \ K (2.2)

If we choose as before K  = J, O — U, u = G o /, v =  G (2.2) becomes:

logŞ M _ log^ ) < C q k, (2.3)G(x) 6 G(y)

for any x y y G U \  J  such that {x,y} is k-nested. We also mention that as /? > 0 will 

be fixed we have C > 0 ,  0 < £ < 1  fixed throughout the paper.

Definition 2.2 A point x G J is called a good point if it is oo-tely nested.

We will see that the limit in (2.1) exists for the good points but first we prove:
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Lem ma 2.3 Suppose that u  «  p then there exists (3 > 0 such that cj a.e. point is a 

good point.

Proof. We are going to show that p a.e. point is a good point.
We consider the natural extension (/, J ) p) of the dynamical system (/, J, p)\

that is :

/ : * / : =  {(tffc)fce-n '• f {xk) =  xk+i {h < -1} -> J,

where

f {(xk)k€-n ) = (f{xk))kç - N.

Then the Borel cr-field in J  defines a <r-field Mq in J by Mo := 7t~1(B) where 

7r denotes the projection of J  onto the first coordinate. It is clear that ( /) -1Mo C Mo- 
Finally denote by p the natural extension of p to J .

A standard fact in Pesin theory (see [Prl] pp.16) shows that for p a.e. x G J  

there exists r = r(x) > 0 such that univalent branches f n of /"“n on jB(7t(x), r(æ)) for 

n =  1 ,2 ,... such that f n(tt(x)) =  7r((/)~n(x)) exist.

Moreover for an arbitrary A: 1/d < A < 1 (not depending on x) and a 

constant C — C(x) > 0:

/!(»(*)) < c \ n and l/n(*~QÊ))l
\ m \

< c (2.4)

for every z G B(7r(æ,r), n > 0.

Furthermore r and C are measurable functions of x.

To use this fact observe that there are C, r > 0 and a set Y C J  with p(Y) > 0 

such that the above properties hold for x G Y  and for these C and r. As p is ergodic, 

by Birkhoff’s ergodic theorem, there exists a set X  C «/, p{X) — 1 such that:

limn—>oo
#{fc < n  : f k(x) £ Ÿ} 

n = fi(Y) > 0, V x e x . (2.5)

Let us put X  ft(X) C «/. Then ^/(A) = 1 and our goal is now to prove that there 

exists x  > 0 such that Va? G A there is A = iV(x) with the property that for any 
n > N  we have that x is x • n-nested. Once this is proved we are done.
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Let us pick x G X  and consider x G X  such that 7r(x) =  x. By (2.5) there 

exists N  = N (x) such that if n > N  :

m k < n : f k ( x ) € Ÿ } > ^ p - -  n. (2.6)

Let i4(n,æ) := {k < n : f k(x) G Ÿ}.  We denote by Bk{x) the component 

of f ~ k (B( fk (x), r)) which contains x. If k G j4(n,x) we have that the mapping 

f k : Bk{x) B ( f k (x),r) is univalent.

We are going to pull annuli from B( f k (x),r) to J3fc(x) using the univalency 

of f k . First we have the following:

Claim: There exist numbers f3 > 0, r ' > 0 such that for any y G J  there exists an 

annulus A(y, r) C B(y, r ) \ J  such that y G inA(yy r) with the properties:

(a) mod A(y , r) > (3

(b) disi (A(y> r), y) > r*

To prove the claim consider an annulus Ao C U such that J  C inAo, mod(Ao) 

I3q. Since J  is totally disconnected and J  = f l /“n(f7) there exists No > 0 such that 

diam Bn0 < r for any component Bn0 of f ~ No(U).

For y G J  let us denote by Aisr0(y) C Btf0(y) C B(y} r ) \ J  the component of 

f ~ N°(Ao) such that y G inAN0(y). Because No is fixed properties (a) and (b) follow 

for A(y> r) := AN0{y)• This proves the claim.

t Let us put now Ak{x) := f ~ k(A(fk (x)} r)) for any k G A(n,x).  It is clear 

that x G inAk(x), Ak{x) C Bk{x) \  J, and mod Ak{x) =  mod A ( f k(x),r) > /3q by 

the uni valency of f k \Bk(x)-
Our annuli will be selected from Ak(x), k G A(n,x); however we need to 

exclude some of them to make sure that they are nested inside each other.

To do that we use (2.4) to see that there exists L > 0 (independent of n and 

x) such that if fci,&2 £ A(n,x),  k% > k \ +L  we have Bk2- kx{fkl (x )) C B ( f kl (x), r'). 
This implies that x G inAk2{x) C inAk1(x).
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By the above consideration we obtain for n > N(x)  at least ^  • #A(n,x)  

annuli nested inside each other, containing x and with modulus greater than /?o > 0. 

If we put now \  := we are done by (2.6).

Lemma 2.3 has the following useful:

C orolarry 2.4 There exists a set X  C J such that n(X)  = 1 and the function 

<p : X  —y R  by:

? (* )=  1o6 t
z k u \ J  G ( Z )

is well defined and continuous on X .

Proof Let X  be the full measure set given by Lemma 2.3 and let x G X. If y, z G U \J  

are close to x it follows that {a?,y,z} is k-nested for k = k(z,y, z). Furthermore 

k —> oo as y, z —> x. By Lemma C we have:

iog^ _ i ogc(/y )
G(z) G(y)

< C q k (2.7)

Now (2.7) implies the existence of <p(x) for x 6 X . Furthermore there exists C\ > 0 

such that if x € X  and z Ç.U \ J  are so that {x, z} is k =  k(x, z)-nested we have:

<p(x) -  log Gjfz)
G(z) < C'i • qk- (2.8)

To see the continuity at x G X  let y G X, y -y x. Then {æ,y} is contained in a 

topological disc D(x , y) which is n(x, y)-nested with n(x> y) - ï  oo as y -» x. By (2.8) 

we have

\<p{x)-<p{y)\<2Ci-qn^ \  (2.9)

which proves the continuity of <p.

As we do not have control on the locations and sizes of the nests we cannot 

extend the definition and continuity of (p to the whole J.

We would like to mention that whenever we obtain a full measure set X  with 
a certain property we can assume that it is f-invariant. Indeed , if X  is not invariant
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we just replace it by:

x  = j \ ( { j r n( { j  r ( j \ x ) ) ) .
n>0 m>0

It is clear that X C X,  /i(X) — 1 and / _1(X) = X.

We finish this section with a technical result which is based on Lemma 2.3 

and will be useful in the next section:

Lem ma 2.5 There exists a set X q C J  , /x(Xo) > 1 — 1/20 and numbers 1 > S > 

0, K\ > 0, K 2 > 0 , No G N such that for any n > Nq, x E Xo the ball B(x,Sn) is 

• n nested by annuli contained in B(x, S**).

Proof Let X , Y  be the sets considered in the proof of Lemma 2.3 and let us introduce:

X N : = { x e x  : #{* < n : f k(x) £ Ÿ} < ■ n, V n > N } .

It is clear that

X n C Xjv+i , X  = Un >n xX n V Ni  > 0 

and hence lim/v-foo P>{Xn ) = 1.

If we choose N q such that /t(Xjv0) > 1 — 1/20 and put Xo := 7r(Xjv0) then 
fi{X0) > 1 -  1/20.

For a; G Xo and n > No there are x  *71 annuli nesting x obtained in Lemma

2.3. Let us consider the ones obtained as preimages using univalent branches fk of 

f \ B ( f k (x) r) ôr *5T — & < n. Their number is at least By (2.4) these annuli are 
contained in B(x,C \ • A*^). Furthermore it is easy to see that they are nesting the 

ball B(x, C2 • ^ r) where L := sup|f f{z)\ and C\,c2 are two fixed constants.

Without loss of generality we can assume that C\ = C2 = 1. Let us put S = £ 

and choose X 2 > 0 such that A2̂  < S * î . Finally choosing K\ = ^ we are done.

3. Homologous equation.

The purpose of this section is to prove:
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RIGIDITY OF HARMONIC MEASURE OF TOTALLY DISCONNECTED FRACTALS

P roposition  3.1 Suppose that (/, i7, V) is a GPL with totally disconnected Julia set. 

U p ss uj there exists a function u G L2(p) satisfying the homologous equation:

ip(x) — log d = u(fx) — u(x) for p a.e. x G J-

The proof of Proposition 3.1 will be done in several steps. Let us introduce 

the function <j> — (p — log d. The first step is to prove:

Lem ma 3.2 Under the assumptions of Proposition 3.1 we have f j  <j>dp = 0.

Proof. As in the proof of Lemma 2.3 consider the natural extension (/, J, p) of the 

system (/, J,/i). Let B be a ball in C. We consider the ”good” branches of /~ n 

defined in B. Following [Z] we say that a branch / ”n is ’’good” ( or S-good for S > 0) 

if:

/ ”n is well defined and univalent in 2B (3.1)

di amf j n (B) < K  • e“"n*. (3.2)

In [Z] and [PUZ] it was proved that there exists S > 0 such that for every 

e > 0 there exists M g N such that if there are no critical values up to order M  in 

B then one can find a subset K b C B = tv~x(B) C J with p (Kb ) > (1 — t)p{B) and 
consisting o f’’good” trajectories. (The trajectory x = (xqX- i .. .Xk . . . ) is ’’good” if 

Xk is the image of some ’’good” branch of f ~ k defined on B.)

We are going to apply this fact in a similar way as in [Z] : let p i , . . .  , ps be 

critical values up to order M . Take a small r > 0 and let e > 0. Let B \>...  ,B8 be 

centered at p,-s with radius r. Let B be cover of C \  (JB, by balls of radius r / 4. If 

r > 0 is small enough then:

p (Vb £bKb > 1  — 6. (3.3)

Introduce the function <f> = <j) on  and suppose by contradiction that

J  (j) dp -  j\<j> dp = x >  0.
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Let us consider the partial sums:

s „ ( i )  =  £ * ( / » ( * ) )  =  J > ( / * 0 r ( * ) ) )  =
*=0 t=0

31(*) =  E  £(/*(*)) =  ^ ( / ’ M *))) =  &  M *))-
i=0 *=0

By Birkhoff’s ergodic theorem there exists X  C J, fi>{X) =  1 such that for x E X

lim =  x > 0.n-»oo n

Let us denote by

=  {x € X  : > I  , V* > n }.

It is clear that X n C Xn+i> Vn > 0 and X  C Un>NXn, VN > 0. It follows that for 

e > 0 there exists N = N(e) such that

ft(Xn) > 1 -  e , Vn > N.

By (3.3) it follows that

fi (Xn n / " " (  ( J  Kb )) > 1 -  2e , Vn > JV.
B6&

Consequently there exists B E B and /? > 0 such that

ft(Xn fl r n{ k B)) > ft for infinitely many n E N

Let us denote by X n := n(Xn D / _n (/<£)); then l*(Xn) > ft.

If x E X n then x = 7r(x) for some x E X n f\ f ~ n(KB), and thus æ is a 

preimage of f n(x) E B under some univalent branch f ÿ n \2B* Let us denote the set 

of univalent branches of / ”n |2# by Qn. By the above consideration we have

c  (J  / - " ( 2B). (3.4)
»eQn

Our goal is to show that while f i(Xn) > ft we have that u>{Xn) 0 as n -> oo. By 

(3.4) we write

“ (Xn) <  £  u>(Kn(2B)r \Xn). (3.5)
l'èSn
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On the other hand x G X n implies that

> I  for n > N,71 2

which means that

S„ (in) > logdn +  n • ~ for n > N, x G X n. (3.6)z

Using (3.6) , for any v G Qn we can estimate:

1 > w(2B  n  f n(Xn)) = f es»W du>(x) >

> <r • e $ n • u>(f~n(2B) n r ) .

Consequently we obtain:

w ( / ; n( 2 B ) n r ) < e - t " . r n. (3 .7)

Relations (3.5) and (3.7) now give:

w ( r )  < £  w ( f - n( 2 B ) n x n) < e - f  " • £  d -n =
VÇ.Gn VÇÇn

= e~f n  • i à m  • £  z e _ f n -

This shows that w(Xn) < e“ a n and as n can be chosen arbitrarily large we obtain 
that /i and u; are singular. This contradiction shows that f j  <j> dp = 0.

Let us consider now the sequence {<j> o /*}* of random variables. Our next

step is

RIGIDITY OP HARMONIC MEASURE OF TOTALLY DISCONNECTED FRACTALS

Lem ma 3.3 There exists a finite asymptotic variance:

T2 := <r2(<j>) := lim

=  f  4>2dfi +  2 •'ŞT f  o / ’ci/i.

Moreover, the sequence {(f> o f k}k obeys the law of Central Limit Theorem (CLT).
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Proof We need to investigate the behaviour of the Perron-Frobenius-Ruelle operator 

L : L2(p) -» L2(p) defined by:

Lu{x) = 2  UM - (3-8)
yef-H*)

If x is a critical value we count the preimages in the above sum together with their 
multiplicities.

The formula (3.8) is correct if u E C(J) and in this way L : C(J) C(J) 

is a well defined linear operator with || L ||c(J)^ 1- We can extend L to L2(p) by 
continuity or by formula (3.8) on an invariant set X  C J  with /i(X) = 1 on which 

u E L2(p) is defined. We have by Jensen’s inequality that || L ||l3(/i)< 1* It is well 

known ( [Lyl], [FLM]) that L*p = and thus J j u  v o f d f i  =  f j V  • Lu dfi. In other 

words L : L2(fi) —> L2(fi) is the adjoint operator of

A  : L2(fi) -* L2(/i), Au = uo f

Our goal is to prove the following decay property of Lk<j>: for any p > 0 there 

exist C =  C(p) and K =  K(p) such that for k > K  we have:

l l ^ l l o o C C - ^ .  (3.9)

Estimate (3.9) gives the first statement immediately. For the second state

ment we apply a theorem of Gordin (see [Go] or [D] Theorem 1.1.2). Following 

exactly the same arguments as in [DPU] - Theorem 5.3 we obtain that the estimate 

(3.9) together with Gordin’s theorem imply the second statement.

To prove (3.9) we are going to use a similar idea as in Section 4 from [DPU]. 

The lack of the uniform Holder continuity of {Lk(f)}k is compensated by Lemma 2.5 
and a result of F. Przytycki ([Pr2]).

Let us start by reminding the following fact proven in [DU]: there exists a 

measurable Markov partition a of J  and numbers 0 < A < 1, C > 0 such that for
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A € a, f (A)  = J \i a.e. and for all n > 1:

/i(U{v4 € V jlo /- J («) : diam f k(A) > Ci ■ Xn~k for some Jb =  0,1....... »>) < 1/20.
(3.10)

For n > 0 let a£ be the collection of the elements of the partition an = 

Vj Jo f ~ H a ) defined in (3.10) and let a” — an \ a^ .

We also are going to use the fact ( see [DPU] Lemma 4.3) that if xp G L2(/i), 

f j  tjj dp = 0 and A >|| *0 ||oo then

p({x : 0(x) < A/4 }) > 1/5. (3-11)

The crucial estimate (3.9) follows immediately from the following:

Claim For any b > 1 there exists an integer j(b) such that if j  > j(b) and [&*'] < k < 

[^ +1] we have the estimate:

\\Lk4\\oo < (39/40)'. (3.12)

In fact the closer we choose 6 to 1 the greater value of p can be obtained in

(3.9).

To prove prove (3.12) we introduce the sequence {nj} j , nj =  [W] and observe 

that since || L0 ||oo<|| 0 ||oo it is enough to show that

H a l l o o  < (39/40)*. (3.13)

We are going to use induction over j: let us assume (3.13) for j . By (3.11) 

we obtain

/i({*: Ln^ ( x )  < 1/4 • (39/40)* }) > 1/5.

Let us introduce the set

Gj := {x : Ln’<t>{x) < 1/4 • (39/40)' } f )  X 0, 

where X q is the set from Lemma 2.5. Then it is clear that p(Gj) > 1/10.
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Let us denote by kj = nj+i — nj and define:

4 : = { > l  € a*’ : AC\Gj *  0}

Relation (3.10) then yields: fi{ô G) > 1/20 .

First of all we are going to show that for y G Uo?G

Ln^ {y )  < 1/2 • (39/40)*7. (3.14)

Observe that if y G Ucr^ there exists x G Gj such that y G B{xyC • \ kj). 

Consequently there is a constant K$ > 0 such that y G B(xy ).

On the other hand by Lemma 2.5 there is a number of ^  • nj annuli nesting
nJ

{x,y} and contained in B(x1SKe).

Since x G Gj gives

Ln^ (z )  < 1/4-(39/40)j ,

we intend to estimate the difference

I Ln* t ( z ) - L n*t(y) E  1 E  l / r W Z y )  .
zx e f ~ ni x  z v e f ~ nj y

Let us denote by {C/},-çj the collection of the components of f ~ nj (B(xyS1̂ ) ) .  

^From Przytycki’s finiteness lemma (see [Pr2] Lemma 2) it follows that there 

exists an integer M  = M(K^yS) such that the degree of the maps: / nJ : Cf —►
ni

B(x} SK&) is at most M.

Using Lemma 2.5 we obtain in G/ a number of at least ^  • nj annuli with 

moduli bounded below by a fixed constant j3\ = /?i(/?, M)  nesting {zXyzy}. Here we 

have used that the modulus of preimages under bounded degree mappings is distorted 

by a bounded amount.

Consequently we can use (2.9) to obtain:

\<f>(zx) -  <t>(zy)\ < c 2 - q l \

where 0 < qi < 1 , qi = qi(Şi ,K4).

16



RIGIDITY OP HARMONIC MEASURE OP TOTALLY DISCONNECTED FRACTALS

This implies that for j  large enough: %

\Ln^ ( x )  ^  L^<j>(y)\ < C i - q ?  < 1/4 •(39/40)*, 

and (3.14) follows.

For x G J  we define Gj(x) := f ~ kj(x) fl Uar ,̂ and Bj(x) := f ~ kj(x) \  Gj(x). 

We are now ready to estimate:

!"***(*) =  £*'(LŴ (* )  =  ] T  1 / d ki Ln’4>{y)+ 1 / d k^- Ln^ ( y )  <
yeGj(x) yeBj(x)

< (39/40y  • l /d k* • (1/2 • #G i (x) +  # £ ,(* )) =  (39/40)' • 1 /dk* • (dk* -  1/2 • #Gj(z)).  

Finally we use that

#G j(*) • 1 /dk* =  / i ( u 4 )  > 1/20

and obtain

Ln»'<j>{x) < (39/40)'+1. (3.15)

Changing 0 to —0 we obtain the counterpart of (3.15):

Ln*+X4>(z) > —(39/40)*+1.

The above estimates yield (3.13) for j  -h i. This finishes the proof of the Claim and 
we are done.

The last step toward the proof of Proposition 3.1 is:

Lem m a 3.4 Under the conditions of Proposition 3.1 we have a2 = 0.

Proof Let us suppose by contradiction that a2 > 0. Let us consider the function 

0i =  — <j> = logd — (p and apply CLT for the sequence of random variables {0i o /*}*. 

As in the proof of Lemma 3.2 we consider the corresponding partial sums but now for 

the function 0i. Instead of Birkhoff’s ergodic theorem we apply now CLT: for any 

A > 0 we have:

p{{x e J  : Sn(z) < —A • g • n1!2}) 0(-A ) ,

17
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where ip(—A) — e“ V<ft.

Exactly as in the proof of Lemma 3.2 we consider the cover B satisfying the 

relation (3.3). Choosing e > 0 in (3.3) to be small we can find /? > 0 and a ball B G B 

such that:

fi{{x e J  : Sn(ï) < - A - a -  n1' 2} (1 r n(KB)) > P > 0 , (3.16)

for infinitely many n-s.

Let us denote by X n n( {x  G J : Sn(#) <  — A • a  • n 1/ 2} D / “ "(A'b ))* 

Then f*(Xn) >  (3 and

c (J f~ n (2B) , (3.17)

where Qn denotes the set of univalent branches f „ n\2B-

Our goal again is to show that u i ( X n ) —>• 0 as n —> oo. As before we have

t^€0n

If x G X n we have

Sn(x) < —A • a • n1/2,

or equivalently

S„(x) > logdn + A - <r - n 1̂ 2.

Using (3.19) we can estimate for any v G Gn-

1 > w(2BCifn(Xn)) = [  es»Wdu(x)  >
J f - n(2B)nXn

> dn • e^"1/!w (/;n(2B )nX n)

As a consequence we obtain

w( f - n{ 2B) nXn) < e ~ Aanl/2 -d~n.

Finally (3.18) and (3.20) give:

w(Xn) < e -Aanl/2.

(3.18)

(3.19)

(3.20)

18
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As n can be chosen to be arbitrarily large we obtain that the two measures 

are singular which is a contradiction proving the lemma.

Based on the above three Lemmas the proof of Proposition 3.1 follows imme
diately as seen e.g. in [PUZ] Lemma 1.1.

4. Conformal maximality.

In this final section we are going to give the proof of:

Theorem  4.1 Let (/, U, V) be a GPL with totally disconnected Julia set. Then u; «  /i 

implies that {f ,U,V) is conformally maximal.

Proof. The proof is based on the homologous equation given by Proposition 3.1

<p(x) — log d = u(fx)  — u(x) , /i a.e. x G J- (4.1)

Starting from (4.1) we are going to construct an automorphic function r  that 

is required by Theorem A for conformal maximality.

Different kind of homologous equations appear naturally when investigating 
the relations between two measures on the Julia set as seen e.g. in [Z], [Vo], [LyV], 

[BPV], [BV2]. Also the techniques to handle these equations are different accordingly. 

Our approach is based on the main idea in [BPV] and [BV2]; however we have here 

the difficulty due to lack of regularity of (p and u.

Let us notice first that we can assume that the invariant set A, p(X) = 1 on 

which (4.1) holds consists of ”good” points (in the sense of Definition 2.2).

^From the proof it will be clear that there is no loss of generality to assume 

that there exists a repelling fixed point p E J  of /  which is not a critical value (i.e. 

p zfz f n(c) for all n > 0 and all critical points of /). Let us consider such p E J. 

Notice that p £ J  is a good point and thus a point of continuity of <j> = p — log d. Our 
first step is to show that

<p(p) -  log d = 0. (4.2)
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(Warning: (4.2) does not follow from (4.1) since we do not know apriori that p G X.)

Let us denote by B  a small disc centered at p such that all components Bn 

of f ~ nB containing p are included in B and B is free from critical points of / .

It is clear that p(Bn) = • ^{B) and

r i
w{B) =  / du(x) where S„(x) = ^  y?(/*(aj)).

'*Bn i=0

Furthermore observe that for any x G Bn f ]J  and i = 0, . . .  ,n -  1 we have that 

{ f %(x),p} is (n — i)-nested. Consequently by (2.9) the inequality

M/H*)) -  ¥>(p)I < 2Ci • qn~l

holds. This implies that

|5 i ( * ) - 5 i ( p ) |< C 2 V*€B„

and therefore there exists K  > 0 such that:

_ L  . e - "  ¥>(p) . w ( £ )  <  <  K  . e -n-<p{,) . w ( £ ) .
K

Consequently ~  en (log <*-¥>(?)).

On the other hand w fa p and thus (0.2) together with the above relation 

imply that <p(p) — log d = 0.

Now we can start the construction of r. This will be done in three steps:

S tep I : construction of r  on B.

Let us denote by g the inverse branch of /  1 : B —ï Bi C B. Notice that 

{p,gnz,gn~1z} is n — 1-nested for any z 6 B, n € N. By (2.8) it follows that

log G(gn- h )
G(gnz) -V>(p) <c i q n- 1

Using (4.2) this gives:

G(gn~lz) 
d ■ G(gnz) < C i q n~ l (4.3)
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Now (4.3) implies that the following limit:

t1{z) : =  lira dn ■ G(gnz) , z £ B  (4.4)n—foo

represents a subharmonic function which is harmonic in B \ J  and vanishing on J. 

Notice also that r 1 is automorphic on B\\ r x(fz) = d - r 1(z).

Our next objective is to show that there exists a function u1 E L\B(p) such 

that for any x E X  p| Bi  :

lim - ^ 4  =  (4.5)
z £ B \ J  r l ( Z )

To define u1 E observe that for any x E B f ] X  the sequence {u(gnx)}n is a

Cauchy sequence.
To see this we use (4.1),(4.2) and the inequality:

\<p(p) -  ?($"«) I < 2Ci qn.

It follows that |u(<7nx) — u(gn xx)| < 2Ci • qn.

Now for x E B f ] X  we denote by ux(x) := limn_>.oo u(gnx). It is clear that

ul  ^
In order to prove (4.5) notice that as x E X  is a good point and z —> x, there 

exists iV(x, z) such that {x, z) is N(x,  z) -nested and N(x , z) —y oo as z —> x.

Let us suppose that x yz E B\] z is close to x, thus {x,z} is TV(x,z)-nested 

for some large N(x,z).  By the definition of r 1:

-  «= lim G(z)_______  ______  ^  Ţ T  G(g»z)
r l (z) n̂ +oo dn • G(gnz) d . G(gn+1z) *

(4.6)

Notice also that {gnx,gnz} is (iV(x, z) — TV0)-nested for some fixed Nq. Without loss 

of generality we can assume that No = 0 and hence {gnx,gnz} is AT(x, z)-nested.

Let us put N  := N( x}z) and consider i < 2N.  Because {g*~lx ygt~iz} is 
TV-nested (4.1) and (2.8) give:

l o g d {G(g'Z)z ) ~ iui9l~ l x ) ~ U{9'X))
< C i - q N
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which means

e u(g'  l x ) - u ( g lx ) - C 1 qN <  @( 9 z ) <  u(gl~ 1x ) - u ( g ' x ) + C l qN
-  d • G(giz) -  *

This implies:

2JV j - y  / J _  2 \
c«(*)-«(yaJVar)-2C1 JV.gJV <  J J  <*[9 *) K  e u ( x ) - u { g 2Nx ) + 2 C , N  qN (4 7 )

»=0 ^ ^

On the other hand for i > 27V we are going to use that {gt~1x,gt~lz} is 
i-nested and so

e u(gx 1x ) - u ( g tx ) - C x ql <  @( 9 z) <  1 ar)-ti(âr,a:)+Ci-9 *
d-G( / z )  -

For n > 27V this implies:

e u(g3Nx ) - u ( g nx ) - C 2-qN <  ŢT *Z) <  eu(g2Nx ) - u ( g nx ) +C 2 qN ( a Q\

-  â k d -G^ )  ~ ' ( 8)

Now (4.7) and (4.8) imply:

e u ( x ) - u ( g nx ) - C s - q N/ 2 <  ŢŢ z )  <  e u ( x ) - u ( g nx ) +C 3 qN/2

Consequently if {x,z} is TV-nested (4.6) and (4.9) give:

u ( x ) - u 1( x ) - C 3-gN/a <  ^ ( Z) <; u ( x ) - u 1(x)-\-C3 qN/2
6 -  n w  -  *

(4.9)

(4.10)

Recalling that N = N ( x )z ) —̂ o o a sz  —ï x the estimate (4.10) gives (4.5).

Let us consider now the union of backward orbits of B : O := Un>o / ~ n£-

Step II: extension of r  to  O

Let Be be a component of f  nB for some n > 0. We define a function r |  on

Be by:

tb{z) = - ^ n ( f nz), z e B 9.

We would like to prove that r# (or a symmetrized version of it) does not depend on 

0 (and n).
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We are going to calculate first the limit: 

G(z)
____ -2TT for x € f ~ n( X n B )  n Bt .Tg{z) V ’limZ-+X

z£B6\J

To do that we write:

G(z) G(z) G( fnz) d-G(z) d ■ G( fn~1 z)
Te(z) ■3*-'r l{ fnz) r l ( fnz) G(fz) G{fnz) '

As n is being fixed we use (4.5) to obtain:

G (z ) _  pu(*)-ui ( r x )  
^  T j ( z ) ~  ■
limZ-+X

z Ç B q \ J
(4.11)

Let us take now n2 > n\ and two corresponding branches fg™2, f e ”1- If 

x G Bex D B$2 H f~ni(X) D f~n2(X) by (4.11) we can write:

limZ-+X
-  cu1( /njW )-» ‘( /”‘ W) 

»  '
(4.12)

zeB6\nBo2\J

let us denote by := f n2(x), x\ = f Ul{x). Then #i,a?2 G B O X  and f n2~ni(x 1 ) = 

a?2. By the definition of u1 it follows that u1(xi) = ux(x2). Consequently (4.12) 

becomes:
. Tg (z)

lim * f . = 1 for v  a.e. x G B H Bq2 H J.

Now we can apply Grishin’s lemma (Lemma B) to obtain that A = A r^ 

on B#l C\Bq2 and hence the function t$ — r |  is harmonic in B$x DB$2 and it vanishes 

on B$1 D Be2 D J.

Now , either or B$x fl B$2 fl J  is covered by a finite number of real
analytic curves. I t’s not hard to see that if the latter happens the whole J  can be 

covered by a finite number of real analytic curves so this will be the case for any pair 

of 0i, 02 for which Bex 0 Be2 is not empty.

Furthermore, without loss of generality (see [BPV],[LyV] or [Vo]) we can 

consider the situation when the curves are disjoint. Let * be a holomorphic symmetry 

with respect to these curves. Instead of we are going to work with

T«iz) d= r«W + rs V ) ’

The advantage is that now in Bg1 H Bq2 .
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In any case we obtain a function r 4 on O such that t\b6 -  Te (or if the 
first possibility =  r |a” always occurs).

It is clear that our function r 4 has the automorphic property on / ” 1C9.

Since J  is totally disconnected there is a number N  > 0 such that f ~ NU C B. 

In the last step we are going to extend r 4 to the whole U.

Step III: extension of r  to  U

Consider z G U which is not a critical value of f N . Choose a topological disc 
free from critical values of f N and containing both z and p.

Let Vn  , be the component of of f ~ NV , containing the point p and contained 

in B . Then the map f ~ N : V —> Vn  is univalent and we can define:

T5{z) = dNr4{ r N{z))1 z E V

It is clear that r 5 does not depend on V since = r 4. We extend r 5 to the

critical values of f N by continuity.

Because r 5 is a positive subharmonic function, harmonic on U \  J  and van
ishing on J  we only need to check the automorphic property.

To do that let us denote by Bi an arbitrary component of We are

going to show that =  r 4. Since r 4 was automorphic on Bi  this proves that r 5 is 

automorphic on Vi where V{ contains B \ .

Let us pick z £ B\  and an appropriate univalent branch f ^ N of f ~N. Put 

z\ =  f g Nz and by our definition we have r 5(z) = dNTA{z\). On the other hand 

observe that f N+1Zi = f z  G B.

By the automorphic property of r 4 we have:

V i )  = dN+1 dN+1 r 4(fz)-

It follows that r 5(z) =  ^ r4(/z) and consequently, by the definition of r4 in Step II 

we have: r5(z) =  r4(z) for z E B\.  This shows that is automorphic. As B\ was 

arbitrary we obtain is automorphic for any i.
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This concludes our construction and proves the theorem.

Final Rem arks:

Our first remark is that our result holds true for general GPL where the 
Julia set is disconnected (whithout being totally disconnected). The reason for this is 

that an invariant, ergodic measure with positive entropy is supported on the ‘totally 

disconnected4 part of the the Julia set. This fact follows from arguments used in 

[PUZ] or [Z].

After this paper has been written the author has found out about the work of 

Anna Zdunik [Zd] where similar problems are discussed in the setting of polynomial

like maps. The approach in [Zd] is different. It is based on a very elegant idea (similar 

to the one in [MR] to apply the Perron-Frobenius operator to subharmonic functions. 

In this way the author constructs an invariant measure absolutely continuous with 

respect to harmonic measure and then relate this invariant measure to the measure 

of maximal entropy. This can be applied also in the case of generalized polynomial
like maps and our result follows by the method in [Zd]. We think however that 

our approach might be useful in treating similar problems and is worthy of future 

développement.
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