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C O N F O R M A L  S T R U C T U R E S  IN TH E  L A G R A N G E  G E O M E E T R Y
OF SE C O N D  O R D E R

M O N I C A  P U R C A R U  ^

Dedicated to Professor Pavel Enghi§ at his 7(fh anniversary

A b stra ct. In the present paper we introduce two d-structures on E = 
O s c 2 M : the conformed metrical d-structure and the almost symplectic d- 
structure and we study the properties o f this two d-structures.

1. In trod u ction

The literature on the higher order Lagrange spaces geometry highlights the 

theoretical and practical importance of these spaces.

Motivated by concrete problems in variational calculation, higher order La

grange geometry has witnessed a wide acknowledgment due to the papers [7 — 11] 

published by Acad.dr.R.Miron and Prof.dr.Gh.Atanasiu.

The study of higher order Lagrange spaces is grounded on the fc-osculator 

bundle notion. The bundle space of accelerations (or 2-osculator bundle) corresponds 

in this study to k =  2, [1], [7].

Very little research has been carried out with respect to the study of the 

important structures in the 2-osculator bundle.

In the present paper we define the conformal metrical d-structure notion, gy in 

the Lagrange geometry of second order and we study the properties of this structure 

(§2). We also introduce the conformal almost symplectic d-structure notion, a, in the 

Lagrange geometry of second order and we study the properties of this structure (§3).
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As to the terminology as notations we use those from [12], which are essentially based 

on M.Matsumoto’s book [6].

2. T he con form al m etrica l d-structure in the Lagrange geom etry  o f  second 

order.
*
Let M  be a real n-dimensional (7°°-manifold, (Osc2My 7r, M) its 2-osculator 

bundle, or the bundle of accelerations. The local coordinates on E  =  Osc2M  are de

noted by (x*, t /1)*, j / 2)*).

If AT is a nonlinear connection on J5, with the coefficients t /2)*),

then let DT(N) =  (Ljk ^ (i ) jk ^ (2)jk) an N~ linear connec
tion, D on E .

Let L ^ n =  (M y L) be the second order Lagrange space, where L : E -> R 
is a C°° differentiable regular Lagrangian of second order, whose fundamental metric 

d-tensor field, gij, has a constant signature on E =  {(Xyy^\y^)  G Osc2My rank

| | ï / 1),ï l  — 1 }  :

ăij(x,&(1),y (2)) =  2 d yW d yW i  ’

gij is a differentiable d-tensor field on E, symmetric, covariant of order two. Let (<7U) 

be the inverse matrix of (gij):

</.fc(*,y(1).y(2)) / J (a:,y(1),y(2)) =  %.  (2.2)

O bservation  2.1. We can consider on E as gij any d-tensor field of type (0,2) on 
E symmetric and nondegenerate.

We associate to this d-structure Obata’s operators:

W j  =  -  g,j9ir), 0*£ =  \(SiSr +  gSJgir), (2.3)

Obata’s operators have the same properties as the ones associated with a Finsler space

[1 2 ].
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Let 62(E) be the set of all symmetric d-tensor fields of the type (0,2) on E. 

As is easily shown, the relation for atJ, bjj E 62(E) defined by:

~  bij 3/>(*• y(1). y(2)) G F(E)  | atj =  e2pbijt (2.4)

is an equivalent relation on 62(E).

D efinition  2.1. The equivalence class g of 62( E ) / t o  which the metric d-structure 
gij belongs, is called: conformal metrical d-structure on E.

Every g\j G g is a positive definite, symmetric d-tensor field, expressed by

9ij =  e2p9ij- (2.5)

We shall find the condition that in a differentiable manifold E, a given gţj E 

62(E) belongs to a conformal metrical d-structure.

Lem m a 2.1. A given positive definite g^ E 62(E) is a fundamental tensor field if 
and only if it holds:

dgij
dyV)k

f(2W =  0 . (2.6)

T heorem  2.1. A given positive definite g'̂  E 62(E) belongs to a conformal metrical 
d-structure if and only if there exists a function p (x ,y^\y^ )  E F(E) satisfying:

where yj2)/ =  g ^ y ^

dy(2)k
y(2ti =  2 dp

dyWk
(2.7)

Proof Let belongs to a conformal metrical d-structure. Since g^ satisfies (2.5), 

we obtain (2.7) from Lemma 2.1. Conversly, if there exists a function p satisfying

(2.7), then gij =  e~2pg!ij  satisfies (2.6). □
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Obata’s operators are defined for G g by putting (,g,xJ) =  (gţj) x. Since 

equation (2.5) is equivalent to

(2.8)

We have:

P roposition  2.1. Obata’s operators depend on the conformal metrical d-structure g, 

and do not depend on its representative g\̂  G g-

3. T he con form al alm ost sym plectic d -structure in the Lagrange geom etry 

o f  second order.

Let M be a real n-dimensional C°°-manifold, (Osc2M ,7r, M) its 2-osculator 

bundle, or the bundle of accelerations. The local coordinates on the total space' 

E =  Osc2M  are denoted by )y ^ t).

If N  is a nonlinear connection on E with the coefficients N ^ tj (x t, y ^ t9y ^ t)J 

JVj2)<J.(**,y(1)<,y(2)*), then let DT(N) =  {L]k,C ^ ljk,C ^ xjk) be an N- linear connec

tion, D, on E.

We consider on E an almost symplectic d-structure, defined by a d-tensor 

field of the type (0,2), let us say a,j(æ, t /2)), skewsymmetric

=  -<**«(*> y(1), l / 2))> (3.1)

and nondegenerate:

det\\aij(x, y(1), y(2))|| #  0, ^  0, Vj/(2) ±  0, (3.2)

We asociate to this d-structure Obata’s operators:

-  atjair), =  l(Si6rj +  a,jdir), 

where (atJ) is the inverse matrix of ( ) :

(3.3)

aijajk =  6*. (3.4)

Obata’s operators have the same properties as ones associated with a Finsler space

[14].
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Let L ^ n =  (M, L) be the second order Lagrange space, where L : E —> R is 

a C°°-difFerentiable, regular Lagrangian of second order.

Let A 2(E) be the set of all skewsymmetric d-tensor fields of the type (0,2) 

on E . As is easily shown, the relation for atj,  bij G A%(E) defined by

Oij ~  bij 3p(x,y(1), ÿ(2)) € T{E)\üij =  e2pbij (3.5)

is an equivalent relation on Az(E).

D efin ition  3.1. The equivalence class, â, o fA 2(E)/„, to which the d-tensor field a{j 
belongs, is called conformal almost symplectic d-sţructure on E.

Every a G à is a skewsymmetric and nondegenerate d-tensor field expressed 

by:

a'ij =  e2paij. (3.6)

Obata’s operators are defined for a[j G à by putting (a ,J) =  (a^)” 1. Since 

equation (2.6) is equivalent to

(a*J) =  e” 2pa*J. (3.7)

We have:

P rop osition  3.1. Obata’s operators depend on the conformal almost symplectic d- 

structure â, and do not depend on its representative a-  G à.
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