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CONFORMAL STRUCTURES IN THE LAGRANGE GEOMEETRY
OF SECOND ORDER

MONICA PURCARU -
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Abstract. In the present paper we introduce two d-structures on E =
Osc®M: the conformal metrical d-structure and the almost symplectic d-

structure and we study the properties of this two d-structures.

1. Introduction

The literature on the higher order Lagrange spaces geometry highlights the
theoretical and practical importance of these spaces.

Motivated by concrete problems in variational calculation, higher order La-
grange geometry has witnessed a wide acknowledgment due to the papers [7 — 11]
published by Acad.dr.R.Miron and Prof.dr.Gh.Atanasiu.

The study of higher order Lagrange spaces is grounded on the k-osculator
bundle notion. The bundle space of accelerations (or 2-osculator bundle) corresponds
in this study to & = 2, [1],{7].

Very little research has been carried out with respect to the study of the
important structures in the 2-osculator bundle.

In the present paper we define the conformal metrical d-structure notion, g, in
the Lagrange geometry of second order and we study the properties of this structure
(§2). We also introduce the conformal almost symplectic d-structure notion, &, in the

Lagrange geometry of second order and we study the properties of this structure (§3).
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As to the terminology as notations we use those from [12], which are essentially based

on M.Matsumoto’s book [6].

2. The conformal metrical d-structure in the Lagrange geometry of second

order.
~

Let M be a real n-dimensional C*-manifold, (Osc? M, w, M) its 2-osculator
bundle, or the bundle of accelerations. The local coordinates on £ = Osc?M are de-
noted by (zf, y(1)f, y(2)%),

If N is a nonlinear connection on E, with the coefficients N(l)ij (=F, y(1%, y( 2y,
N(2)ij (z, 1) y(2)¥), then let DT'(N) = (L;,,, C(l);.k, C(Z);‘k) be an N- linear connec-
tion, D on E.

Let L()" = (M, L) be the second order Lagrange space, where L : E — R
is a C* differentiable regular Lagrangian of second order, whose fundamental metric
d-tensor field, g;;, has a constant signature on E = {(z,yM,y?)) € Osc*M, rank
st = 1} :

%L

1
1) @) =
gii (=, 4, y®) = 3 5y oy @i

(2.1)

gi; is a differentiable d-tensor field on E, symmetric, covariant of order two. Let (¢*)

be the inverse matrix of (gi;):
gik(z, ¥, yP)g* (z, 5V, y®) = o], (22)

Observation 2.1. We can consider on E as g;; any d-tensor field of type (0,2) on

E symmetric and nondegenerate.
We associate to this d-structure Obata’s operators:
Qir — 1 J'.J" ir *ir __ 1 6:’51‘ ir
Y 'é( 505 — 9559 ): Qsj - 5( 39; + 9559 )) (23)

Obata’s operators have the same properties as the ones associated with a Finsler space
[12].
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Let S3(E) be the set of all symmetric d-tensor fields of the type (0,2) on E.
As is easily shown, the relation for a;;, b;; € S2(E) defined by:

ai; ~ bi; < 3p(z, ¥V, y?) € F(E) | aij = €*byj, (24)
is an equivalent relation on S2(E).

Definition 2.1. The equivalence class G of S2(E)/~, to which the metric d-structure

gij belongs, is called: conformal metrical d-structure on E.
Every yﬁj € § is a positive definite, symmetric d-tensor field, expressed by
9i; = €°°9ij. (2.5)

We shall find the condition that in a differentiable manifold E, a given g{; €

S2(E) belongs to a conformal metrical d-structure.

Lemma 2.1. A given positive definite g;; € S2(E) is a fundamental tensor field if
and only if it holds:

0gi; 1
gy =0 (2.6)

Theorem 2.1. A given positive definite g!; € S2(E) belongs to a conformal metrical
d-structure if and only if there ezists a function p(z,y(V),y()) € F(E) satisfying:

9g;; i 0
3 (2)j _ (4 (2)/
Ry = 2gew 27)

where y§2)/ = géjy@)j .
Proof. Let gj; belongs to a conformal metrical d-structure. Since gj; satisfies (2.5),
we obtain (2.7) from Lemma 2.1. Conversly, if there exists a function p satisfying

(2.7), then g;; = e~2g/; satisfies (2.6). O
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Obata’s operators are defined for g}; € § by putting (¢"/) = (g;)~". Since
equation (2.5) is equivalent to
g =gl (2.8)

We have:

Proposition 2.1. Obata’s operators depend on the conformal metrical d-structure §,

and do not depend on its representative g;; € §.

3. The conformal almost symplectic d-structure in the Lagrange geometry

of second order.

Let M be a real n-dimensional C*-manifold, (Osc*M, x, M) its 2-osculator
bundle, or the bundle of accelerations. The local coordinates on the total space
E = Osc®M are denoted by (zf, y(V)i, y(2)%),

If N is a nonlinear connection on E with the coeﬂicien‘ts N(1)i (e, Y1 (),
N(z)‘j(z‘, y(1¢ y(2)%) then let DT(N) = (L}k, C(l);.k, C(2);.k) be an N- linear connec-
tion, D, on E.

We consider on E an almost symplectic d-structure, defined by a d-tensor

field of the type (0, 2), let us say a;;(z, y1), y(?), skewsymmetric
aij(2, 4, y?) = —aji(z,y"), y?), (3.1)
and nondegenerate:
detljai;(z, ¥, y)|| # 0, vy £ 0, vy?) £, (3.2)
We asociate to this d-structure Obata’s operators:
¥ = %(555; — 4,50, 8% = -21,-(5;‘5;. +a,50"), (3.3)
where (a%/) is the inverse matrix of (a;;):
a;ja* = 6¥. (34)

Obata’s operators have the same properties as ones associated with a Finsler space
[14].
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Let L(2)n = (M, L) be the second order Lagrange space, where L : E — R is
a C™-differentiable, regular Lagrangian of second order.

Let A2(E) be the set of all skewsymmetric d-tensor fields of the type (0,2)
on E. As is easily shown, the relation for a;;, b;j € A2(E) defined by

a;; ~ bij © Fp(z, 4V, y?) € F(E)|ai; = e*b; (3.5)
is an equivalent relation on A3(E).

Definition 3.1. The equivalence class, &, of A2(E)/.,, to which the d-tensor field a;;

belongs, is called conformal almost symplectic d-structure on E.

Every a:-j € a is a skewsymmetric and nondegenerate d-tensor field expressed

by:

a;j = e*a;j. (3.6)

Obata’s operators are defined for a;j € a by putting (a"j ) = (a:-j)‘l. Since

equation (2.6) is equivalent to
(a9) = e~2Pqid, (3.7)
We have:

Proposition 3.1. Obata’s operators depend on the conformal almost symplectic d-

structure @, and do not depend on its representative a;j € a.
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