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THE ASSOCIATED LOCUS OF SOME HYPERSURFACES IN R"+!

CORNEL PINTEA

Dedicated to Professor Pavel Enghig at his 70°* anniversary

Abstract. For a smooth hypersurface of the space R™*! project orthog-
onally the origin of R™¥! on its tangent hyperplanes and call the set of all
projections the associated locus of the given hypersurface. In this paper
we are going to find the equation of the associated locus for some given
hypersurfaces and to show that it is a smooth hypersurface diffeomorphic
with the initial one. We will also show that in one particular case both
of them, the hypersurface and its associated locus, are diffeomorphic with

the n-dimensional sphere.

1. Introduction

In this section we recall a simple fact concerning homogeneous functions which

will be very useful for all over this paper.

Definition 1.1. A function f : R**!1\{0} — R is called homogeneous of ordera € R
if f(tz) = t*f(z) for all t > 0 and all z € R*+1\{0}.

Lemma 1.2. If f : R**!\{0} — R is a smooth homogeneous function of order
a € R* and ¢ € R*, then f~'(c) is either the empty set, or f~1(c) is a smooth
hypersurface of R*+1.

Example 1.3. Let a be a natural number, 8 € {1,...,n+1}anda = (a1,...,8n41) €
R"™*! be such that a; #0 Vi € {1,...,n+ 1}. Then the set

2a 2a 2a 2a
| z To+1 Thil

HE':{-’L’:(zl,--- s Zat1) € RPN\ {0} pa"""“";g;—;z%—“'-a—g}: 1}
1 B+1 n41

is a hypersurface of R*+1,
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Observe that Hp can be also represented as Hg = F1(1), where

2a z2a m2a
+1
f:R*\{0} 2 R, f(xr, . Tny1) = + -~ ___.aga ..... -a;:l .
ﬂ L+1 n+1

2. The associated locus of the hypersurface Hg

Let £ = (21,...,ZTn41) € R*! and @ € R be such that z{ exist for all
i€ {1,...,n+1}. Denote by z* the vector (¢, ... ,z%,,) and observe that z* = ||z||?
for all z € R™*! and that (tz)* = ¢*z® for all £ > 0. Also, if there exist the vectors
z°? and (z*)?, for the real numbers a, B, then z*# = (z)#. Using this notation the

equation of Hg can be rewritten as follows:

Hf : p(a™?*, 2% =1 (1)
where ¢ : R**! x R?+! 5 R is the nondegenerate biliniar symmetric form given by'
(T, y) =z1y1 + -+ TpYs — TE41YB+1 — *** — Tnt1Yn+1

forallz = (z1,...,Zn41),¥ = (Y1,--- ,Yn41) € R*F1.

Theorem 2.1. The associated locus LG of HF 1is the set

{z e rR**1\{0} | llel|=27 = p(aziT, z385) ).
Proof. Denote by Aj the set
{z e RN\(0} | llzll™2r = p(amr, 2%5T) )

and consider p° = (p},...,p}41) € HE. The tangent hyperplane Tpo(Hg) of Hf at

p° has the following equation:

n+1
Tpo (Hﬂ) Z 67(130)(1'; ) = 0, or, equivalently
i+1
0)20—1 n+l 0)2a—1
po(I{a) Z(p ) i — Z ( )20___1:'_1 (2)
41 ’ i=f+1 a;
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The parametric equations of the straight line passing through 0 € R™*! which is
orthogonal on the tangent hyperplane T,o(Hg) are:

0\3a—1

;=1 ,1€{1,...,8}
@)

0)2a—1

z; =—t , t€{f+1,...,n+1}.

To find the orthogonal projections of 0 € R**! on the tangent hyperplane Tpo(H g),
replace the z;, i € {1,...,n+ 1} from equations (3) in the equation (2) and we get:

n+tl 0)4a— 1
¢ 1 thatis,t=
Z; ’ ’ (a—-4a,(p0)4a 2)

where (-,-) is the usual scalar product on R®*!. Hence, the orthogonal projection
e Lgof0 € R™*! on the tangent hyperplane Tpo(H 5 ) has the following coordinates

0y32a—1

T; = (a-u.’(;o)q,,,_,) (P.‘z?a , 1€{1,...,5}

(4)
I_T_GUF_’T_?-Z::— 1€{,3+1, ,n+l}.
Therefore, on the one hand, we have
+1 +1 -
1P =3 52 = ey 3 S = =
part (a-4a (p0)4a— )2 o a?u <a—4a, (p0)4a—2)
and on the other hand
(P2t .
a,z‘.:z;:q#Fa—_—’y(%:‘) , 36{1,...,,3}

()

Q Za—i
a;x; = '—(4-40,(;0) p— (%'L) , te€{B+1,...,n+1}.

From relations (5) it follows

n+l
¢(a2a-l ) 0) 2«— ) Z(a‘x‘) 'Jar—l —_— Z (a,w,) 20—1 =
i=1 i=f+1

BT sa [ 0yZay _ 1 AT
= (gores) e 0= (o)
namely
llg°l177 = p(a%2=T, (¢°) 757),
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that is ¢° € AjF and we just showed that £5 C A7. To prove the other inclusion,

consider 2° = (z{,...,20,,) € A3, that is,
l12°1|7% = p(am7, (2%)7%7).

It easy to verify that z° is the orthogonal projection of the origin 0 € R™*! on the
tangent hyperplane Tpo (Hg), where p° = (p?,...,pj 1) and its components are given
by:
o = (@) () = i (L., )
(6)
9 = —(a) % (i) ™ € {1, mk 1),
and the theorem is completely proved.Ol
Let us mention that the associated locus of an ellipsoid appears in [Ca, pp.-

90,91] as an exercise.
Theorem 2.2. The associated locus L of H g 15 a smooth hypersurface of Rt

Proof. According to theorem 2.1 we have succesively
£ = {z e R™\{0} ||}zl 7% = p(am%r,2%%7) } =

2a 13
a%a-1 Fp3a-1 )

= = 1} =¢71(1),

||=]|7==

= {z e r™\{0} | e

where
(073‘:—1 3532—1)
g :R™\{0} 5 R, g(z) = B 777

4a

||=]|7>==

For ¢t > 0 and z € R**!\ {0} we have:

_ p(a%,(tz)%ﬁ'—x) 3 w(aaz—‘:.,tﬁ% .z%’_'-l) B

tz
9(tz) |[ez]|7a2T 7T ||z ||7=T
tﬁn'%f(p(afﬁ_l,z%) 2 ()O(a’;_:‘,.’l)i‘_:—:—l) 20
= t24al”z“°1al :tl_—%: ‘ ”z”ﬁ‘al :tl—ﬂa ‘g(t).
o — o — ox—

Therefore g is a smooth homogeneous function of order 12%=. Because (a1,0,...,0) €
g71(1), it follows that g=!(1) # @, that is, according to lemma 1.2, £ = g~!(1) is a
smooth hypersurface of R**+1.0
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The hypersurface Hy,; and its associated locus £y, ; will be simply denoted

by H® and L* respectively. The equation of H® is
H*:(a™*,z?*) = 1.
Corollary 2.3. The associated locus of H* is given by
£2 = {z € RPI\(0} |[]o]| 21 = (a7, 278%1) }
and it is a smooth hypersurface of R"*1,

3. The diffeomorphism between H g and L5

Theorem 3.1. The mappings x : Hg - L3, x1: L5 — HF given by

L (g T gt e .
—-_ LR LR — L —-—
X(:L') = (a~%a g%a-7) ( df"’ ) ) a;‘," ) "p+1 y ) a':l'l )1 = (2:], oo 7$n+1) € Hp
( ) aﬁa—l xﬁal-—l aia-l .3201—1 __aza—l zﬁa-l . 23:1 . xza—l
X1\z) = Tz_ai_; 1 1 1---8g 8 p+1 " Zpy1 v TOng1 " Tagy
forallz = (z1,...,2n41) € L§, are well defined and they are inverse to each other.

Proof. Indeed on the one hand, for z = (z1,...,2a41) € HE, we have:

1 nt+l 4a-2  _2a

lIx(@)|1%2 = (lIx(=)[1) ™= = > za‘“‘ )

(a—te, glo-2ymsT \ &

_ 1
—-4a pda-—
(a=%, z

-4a i 2)2°_1 = 1
(a—%a, plo=2)7a%

el ,

and on the other hand,

2 _2e_ 1 2o de3 o
G (a-4a,z4a—2)£’_—x¢(a“—l e a) =

—_ 1 -2a 2a\ __ 1
O = pla™, %) = (a4, pla-2ymsT

Therefore
”}’(("3)”7‘%T = 90(0’:_:‘,)((17)53'3-7) for all z € Hg,

that is x(z) € £§ for all z € Hg, which means that the mapping x is well defined.
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Analogously, for z = (21, ... ,Za+1) € L§, We get:
1
(p(a—2°”xl(z)3°) = i “ — ‘P( _2°‘+2a-1 , £3a-1 )—- ” ” (p(azu—l zaa-l) =1,
||3x-1

that is x1(z) € Hg for all z = (z1,...,2n41) € L, and the mapping x; is well
defined.

For z = (z1,... ,Zn41) € L§ we also have:

(x o x1)(z) = x(x1(2)) =

1 2:- 1 Dal— l 2a-1 Oa- X Qa: 2«1— 2:— 2«‘— 1 —
=X(l|zlla—°-f (al ! et Thegm T e Egtt s —agi el ) ) =
=z
_ 1 1 i
= e ) Pt fer) = 2= e ()
llz)|3a=T

On the other hand, for z = (21,...,%n41) € Hg, we have

2a~1 2a-1 2a-1 2a-1

1 z s _Tp+1 ZTnt1
(o) (@) = x1(x(@) = x(—m—mzam (B =T
P e A L S P
1 1
= I =z =1idya(z2).0
(n§+l: i ) <G—4a gie=2)5a=1 (@1, s Zn41) = 2 = idpg (2)
Jo-l
(a~do zm-z)}"z— ~ ;loz

Corollary 3.2. The mappings x and x1 are diffeomorphisms between Hg and L3.
The next theorem can be proved in a completely analogous way.

Theorem 3.3. The mapping h : H* — S™, h(z) = “%“ is a diffeomorphism and
h_l :S™ > H is given by h—l(-'ﬂ) = (a—_z%m.
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