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A b stra ct, In this paper we extend the Willem deformation lemma for 

continuous functionals and we traite also the equivariant case. With the 
aid o f this results we extend the min-max results of Ghoussoub [21]. As ap
plication we give an another proof of some multiplicity results of Corvellec
[5] and we give some multiplicity results for continuous functionals which 

contains a large class of multiplicity results for differentiable and locally 
Lipschitz functionals.

1. Introduction.

In many papers is studied the critical point theory for continuous functionals, 

see [3], [4], [5], [2], [?] and [8]. In this paper using some results from the paper of J.-N. 
Corvellec, M. Degiovanni and M. Marzocchi [4] we prove the Willem deformation lem
ma for continuous functionals. We traite also the equivariant case. With the aid of 

this results we give a simplified proof and generalize some min-max results of Ghous
soub [21], Fang [6], and Ribarska-Tsachev-Krastanov [9]. Using this result we give 
some multiplicity results of Ghoussoub [21], which represent an another proof of some 

multiplicity results of Corvellec [5]. As applications for different topological index we 

give some minmax and multiplicity results for continuous functionals, which repre
sent generalizations for well known results, see Fadell [19], Santos [33], Chang [16], 

'Marzocchi [28], Goeleven-Motreanu-Panagiotoulos [23], Mironescu-Radulescu [32] and 

another results.
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First we recall some definitions and result from the paper of M. Degiovanni 

and M. Marzocchi, see [3].

Definition 1.1. Let (X, d) be a complete metric space and let /  : X  -4 M be a 
continuous function and u E X  a fixed element. We denote by \df\(u) the supremum 

of the a E [0, oo[ such that there exist S > 0 and a continuous map

% : B(u} S) x [0,<î]-*M

such that Vv E B(u,6) for all t E [0,£] we have

a) < t

b) f (n(v, t ) )  <  f(v) — crt

The extended real number \df\(u) is called the weak slope of /  at u.

Definition 1.2. Let /  : X  -4 MU{oo} be a lower semicontinuous function. We define 
the function

Gj : epi(f) -4 M

putting

ep*(/) = { ( « , { ) e ^ x ® : / ( « )  <£ } and £/(«,£)=£.

In the following epi(f) will be endowed with the metric

=  (d(u’ v)2 +  (£ -  p )2)*-

Of course epi(f) is closed in X  x M and Gj is Lipschitz continuous of constant 
1. Consequently |d£/|(u,£) < 1 for every (u,£) E epi(/).

Proposition 1-3. Let f  : X  -4 M be a continuous function and let (u,£) E epi(f). 
Then

I £ /!(« .£ )
/ i W i f i t  \2 ’ if  =  t and I ^ K " )  <  00 << v  1 +  \df\{u)2

1 if f(u) <  fo r  |<f/|(u) =  oo.
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Theorem 1.4. (  Theorem 2*11, [4]̂  Let (X,d) be a complete metric space and let 

f  : X  —► M be a continuous function, C a closed subset of X  and 6> <r > 0 such that

d(u,C)<6=>\df\{u)><r.

Then there exists a continuous map p : X  x [0, S] —y X  such that

1. d(T](u,t),u))<t,

2. f(rj(u,t)) <  /(u ),
3. d(u,C) > S =}• T}(u,t) =  u,

4. u e C  = >  f(rj(u,t)) < f(u) -  ai.

In the following, for every c € M we use the next notations:

K c{f) =  { x e X :  \df\(x) =  0 and f (x)  =  c};

f e =  { x e X  : f (x )  <  c} : 

fe =  {x E X  : f (x )  >  c}.

2. Willem deformation lemma

In this section we extend the Willem deformation lemma for continuous func
tionals.

Theorem 2.1. Let {X,d) be a complete metric space, f  : X  —> M a continuous 
function, C a closed subset of X  and c E M a real number. Let e and S > 0 two 
number such that we have:

V u E /~ 1([c— 2e,c +  2e]) D C20 : we have \df\(u) >  e. (2.1)

Then there exists two real numbers ef E (0,e) and A > 0 and a continuous map 

rf : X  x [0,1 ] -+ X  such that: 

a) d(r](u,t), u) < At,

*>) /(»?(«, <)) < / ( « ) ,
c) i f u #  / -1 ([c - 2  e, c +  2e]) fl Cu  : r)(u, t) =  u, V <6 [0,1]

d) rt(fc+e' n c , i ) c f c- e',
e) V t E]0,1] and V u E f f l C u i e  have u)) < c.
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Proof. First, we suppose that the function /  : X  —ï M is Lipschitz continuous with 
constant 1. We consider the set:

C* := { u e X \ c - t x < / (u )  < c  +  iu d { u , C ) < 2 S - S i } } (2.2)

where Si -Mi < 2e,Si < 2S and £i,<i > 0, for example Si := min{e,£} and t\ =  
Obvious the set C* is a closed subset of X.  We observe that from the relation 

d(u,C*) < Si we get:

u G  /  1 ([c — 2e, c 2s) 0  (2-3)

Indeed, because \f(v) — f(u)\ < 1 • d(u, v) for Vu, ü G X w e  obtain

—d(u, u) < /(u ) — f(v)  < d(u,v), Vu G C*. 

Using this relation and the fact d(u, C*) < Si we get

c — (U + < /(u ) 5! c H" ( î + ^i).

Because -M i < 2e we obtain u G / ” 1([c — 2e} c +  2e]). It is easy to verify that 
d(u,C*) < Si implies u G C20.

Because e > , from the relation (2.3) we obtain |d/|(u) >
V 1 +  £2

Now we can apply Proposition 2.4, for
\/l +  £2

and we get a continuous
\/\ +  £2

function rf : X  x M  —> M which satisfied the conditions l)-4) from Theorem 2.4.

Without loss of generality, we assume that A =  Si, and define the function rj : X  x
[0,1] —)■ M by t/(u,/) =  r)f(u,\t). The properties a) and b) are obvious. Let u ^
f ~ 1{[c — 2e, c -f 2e]) O C26 since /  is a Lipschitz function with constant 1, we have
d(u,C*) > Si and using Proposition 2.4, a) we get r}(u,t) =  u.

For the proof of d) let e9 =  min{<i, -y » ,  ■ } and we distinguish two cases: 
t v 1 +

2.4) If u G / c+e/ fl <7 and /(u ) > c — e' it follows that u G C*, hence we have

£ . . 6
/ f a K  1)) < / ( « ) < C +  £ < c — e9.

2.5) If u G / c+£/ fl C and /(u ) < c — s', then from b) we get

/M M ) )  < / ( « )  < c - e ' .
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The part e) of the theorem is proved in same way as d).

Now we consider the general case. For this let C** =  {(u, £) E epi{f)\ u E C}.  
The set epi(f) is closed in X  x TSL and it follow that epi(f) is a complete metric space. 
In the next we prove that for every (u,£) E epi(/) with (u,£) E GJ^[c — 2e, c +  2e]) fl 

C ;;, we have \dgf \{u,Ç) > — = .

We distinguish two cases:
I) Let f(u) =  £. In this case we have two subcases.

a) \df\(u) < oo. If (u, f(u)) E ÇjT *([c — 2e, c +  2e]) O then we get u E / " 1([c -  

2e,c-b2e]) and dep((«,/(u)),(7**) < 2J. Because d(u,C) < dep({u, /(u )), (7**) < 2<î 

we get u E / “"1([c — 2e, c -f 2e]) H C26 and using the hypothesis of theorem follow 
\df\(u) > 6.

Because \df\(u) < 00 from Proposition 1.3 we have \Gj\{u, f{u)) =  —7- i-y iw  — and
y  1 +  \df\2(u)

using the fact that the function x ■■ is increasing we have \dÇj |(u, f(u)) >
' y l  +  x 2

£

y/l +  e2
b) If \df\(u) =  00 using Proposition 1.3 we get \dGf\(u, / ( « ) )  =  1 >

y/l +  t
II) If f(u) < then from Proposition 1.3 we have \dGf\{u,f(u)) =  1 > ■ ■ ■ ■.

V l +  £2
From these we get that for every (u,f) E GJ l ([c—2e, c+ïë^CiC^Î implies |d(7/|(u,£) >

2

e
\/l + s2

The set A := GJ*([c — 2£, c +  2s]) fl (7££ H epi(f) ^  0, because if it E C, then 
(u ,/(u )) E A  We apply the previous step for X  := epi(f)> f  Gf  and C := C**. 
Then there exists two positive numbers A > 0 and a continuous mapping rj := 

iWiiVJ) : epi{f) x [0» 1] -> epi(/) such that the following holds:
2.6) dep((fj(u,^),t)7(u^)) < A*, V (u,£) E e p i ( f ) y  t E [0,1];

2.7) =  =  for all(u,£) E epi(/), and
V t E [0,1];
2.8) î/((u,^),/) =  (u,£)for every (u,£) E epi(f) with(u,£) £ ^  1([c-2e, c+2s\)C\C”6',

2.9) ^ ( ^ ' n C ^ l J c e p ' ;

2.10) /(rç((u,£)>0 < c for every < E]0,1] and V (u,£) E ^  0(7**.
We define the function 77 : X  x [0,1] X  by
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2.11) »?(«,<) = » h ( ( « . / ( « ) ) ,  O-
Because rj takes its values in epi(f)> we have

2-12) / ( » h ( K /(«))>*) <»?2((u>/(-))>*)
From 2.6) we have:

d{T)(u,t),u) =  d((771(u ,/(u ),i),ti) <

< [<*2((»h(« . /( « ) ) .< ) .“ ) +  (»?2 ( (« ,/(« )) ,* )  “  / ( « ) ) 2] “ =

=  dep((rf(u, f(u)),t),  («, /( « ) )  < At.

From the relations 2.7) and 2.12) we get

f{n{u,t)) =  /(»h («,/ («)),* ) < ^2((«. /(«))» 0 < /(«)•

If u g f ~ x ([c — 2e, c +  2e]) n C24 then
2.13) (u, / ( « ) )  g Ç j l ([c -  2e, c +  2e]) ft C £ .  •
Now we assume that (u, / ( « ) )  G ^J1([c — 2e, c +  2e]) n C ^ . Prom this follow that
2.14) /(u ) € [c — 2e, c +  2e]
and (u, /(u )) G C ^ , which is equivalent with dep((u> f(u)), C**) <  2Æ. But we have 

d(u,C) =  infMti'tOlt; G C } < in fK PK /(« ) ) ,  («,€)) I («,€) G C**} =  dep((u ,/(*)),£**). 
From this and from 2.14) we get u G Z""1 ([c — 25,c +  2s]) H C25 which is a contra

diction with assumption. If u £ / “ 1([c — 2e,c -f- 2e]) fl C26, then from 2.8) we get 

T)(u1t) =  7jl ( (u,f (u)))i) =  u.

If /(u ) < c  +  e; then from 2.9) and 2.12) we get

f(7j{u} 1)) =  / (^ (u ,  /(u )), 1) < rj2((Ui /(u )), 1) < c -  s1.

From 2.10) and 2.12) we get the relation e).

In the following we use the next form of Willem deformation theorem.
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Corollary 2.2. Let (X , d) be a complet metric spacet f  : X  —¥ M a continuous func

tion, C a closed subset of X  and c G l a  real number. Let e > 0 be a number such:

V X G / “ 1( [ c -  2eyc +  2e]) r\C2e : we have \df\(x) > e.

Then there exists two real numbers e* G (0,g) and A > 0 and a continuous map

rj : X  x [0,1] —y X  such that:

a’)  d{i](uyt )yu) < Xt, for every t G [0,1].
b’)  f{r](uyt)) <  / ( « ) ,  for every t G [0,1] and x G X.

c ’) i f x £ f - 1( [ c - 2 e yc +  2é\)nC2e - ,n{x,t) =  x y V f€ [0 ,l ] .

d’)  T){fc+€> DC, 1) C / c~e' twtt e  =

V t G]0,1] and V a? G / c H C w/e ftaue x)) < c.

Proof In the proof of Willem deformation lemma we take J := £, fi =  Ş and
p/ — g

2>/l +  e3'
3. A minmax result

Definition 3.1. Let B a closed subset of Af. We shall say that the class F  of subsets , 

of M  is homotopy stable with boundary B if:

(a) Every set in F  contains B\

(b) For any set A G F  and any continuous function tj G C([0,1] x M yM)  verifying 

7](ty x) =  x for all (J, x) G ({0} x M)  U ([0,1] x B) we have 7/(1, A) G F.

Definition 3.2. We say that a set F is dual F  if F verifies the following conditions: 

1°) dist(F, B) > 0 ;
2°) F H A / 0  for all A e F .

Denote by F* a family of subsets which are dual to F  and we say that F* is 

dual family to F. We have the following relation

c* := sup inf f (x)  < inf sup f ix)  =: c.

Examples:

3.1) Let K  be a compact metric space, Ko C K  a closed set, X  a Banach space,

X E C(Ky X). Then the set F  ~  { A  =  g(K)\g G C(KyX)  with g(Kq) =  x(Ko) } is a
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homotopy stable family wits boundary B =  x(Xo).

3.2) For each n G N the families

Tn — { A \ A c  Xwithcatx(A) > n }

is a homotopy stable family, where cat* (A) denote the Ljusternik-Schnirelmann cat
egory.

3.3) For each n G N the families

Tn — { A IY C A andcat(x,Y)(yl) > n }

is a homotopy stable family with boundary Y, where cat(x,y)(A) denote the relative 
category, see [25].

3.4) We recall the definition of the P-ideal valued cohomological index. Let E be a 
paracompact space and (X , A) E £e whwre £e is the category of paracompact pair 
(X, A) ion E for a fixed closed subset A of E. Let H*(,) be the Alexander-Spanier 

cohomology theory with a field coefficient X , see [34]. The cup product defines a 

multiplication on H*(X,A)  as Blows:

H*{X,A)®  H*(E) H*(X,A)® H*(X) -+H*(X,A) ,

where 1 is the identity on H*(X, A) and t is the inclusion map X  A  E. Therefore , 

H*{XyA) is an H*(E) module. In particular, H*(A) is also an *(J£)-module. We 
introduce the following notation: A =  H*(E). For an H*(E)-submodule P  of H*(A) 
the P-ideal value cohomological index of (X, A) over K  is an ideal denoted by

P -  IndexE(X, A) =  {A G A | ti • A =  0, Vu E M* (X, A) },

where M *(X,A) =  6*(P) for q >  -1 , M °(X ,A ) =  £ (K )y 6* is the coboundary 
operator for the pair (X, A) and £ is the augmentation. In the next we consider A 
and B two disjoint closed subsets of X. We say that A is P-ideal linking to B if and 
only if

42
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Let E be a connected paracompact space. We suppose that the following conditions 

holds:
T) There are two disjoint sets A and B such that A is P-ideal linking to P ,P  C 
H*(A);

2’) There exists a closed set X  D A in E such that X  \ A is precompact and 

P  — Index e  {X , A) — P — Index e (E  , A).

We denote by a =  P  — IndexE{E,A) and =  P  — Index e (E \ B yA). Since A is 
P-Ideal linking to P, we have j3 D a and f} ^  a. We define the set

Ea =  { (X,'A) G £e : P -  IndexE{X } A) =  a },

where £# is the class of all paracompact pair (X, >1) inP. Note that Ea ^  0 s
ince (X , A) G Ea. We prove that Ea is homotopy stable with boundary A. Let 

(X , A) G Ea be a paracompact pair and 77 € C([0,1] x E,E)  a deformation such that 
=  a? for all (t,x) G ({0} x E) U ([0,1] x A), From the invariance property of 

the P-ideal valued index we get 77(1, X)  G Ea. Since A is P-Ideal linking to P, then 

for every X  G Ea we have X  H P 0.

In the next we prove the main result of this section which generalize the main 
results from [21], [6] and [9].

Theorem 3.3. Let (X , d) be a complete metric space and let f  : X  —> M be a contin

uous function. Consider a homotopy stable family T  of subsets of X  with boundary 

B and a dual family T* of T . Let F  G 7* be a fixed, element which verifies the 
following condition

« £ / ( * )  >c> (3.1)

where c inf sup/(x).
x£A

Let e G (0, and S > 0 be arbitrarly fixed numbers. Then for any A £ F
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which verifies the relation

sup f (x )  <  c +  — - e --- ,
+  e2

then there exists xe € X  such that the following holds:

(i) c -  2e < f ( x e) < c  +  2e;

(ii) \df\(xe) < e;

(in) dist(xeiF) < 2e;

(iv) dist(xe,A) < 2e.

(3.2)

Proof. From the definition of the number c, there exists a subset A C X  such that
sup f (x)  < cH----- ______ From this we get that for every S > 0 we have the following
*ga 2\/l +  e2
relation:

sup f (x)  < c +
xţAnFs 2v/ T m

Using the fact that dist(x,A) =  dist(x~24), the assertions i)-iv) from theorem is 

equivalent with:

exists an x€ G /  1 ([c — 2e, c +  2e]) H Fze fl A^£ such that \df\(x£) <  e.

We suppose the contrary, i.e.

V x G / _1([c — 2e, c - f  2é\) H F 2£ fl A^e we have \df\(x) > e. (3.3)

We consider the set C := A C\ F  then we have =  ( F f l i ) 2e C (F  fl A)2e C 
F2£ C\A2e. From the relation (3.3) we have the following implication;

if x G / _1([c — 2e, c-h 2e]) f)C e then \df\(x) > e.

From Corollary 2.2 we have a continuous function 77 : X  x [0,1] -* X  and A > 0 which 

satisfies the assertions a’)-e’) with A < min{£, J}, see the proof of Theorem 2.1. Let 

Ai =  r}(A, 1), If a: G CxC2e, where CxC2e denote the complementary of the set C2e 
in X, then from the propertie c ’) we have 7j(x, t) =  x for every t € [0,1], Using the fact 

that dist(F, B) > 2e, we get B C CxC2e, thus we have B =  tj(B, 1). Because T  is 

a homotopy stable family with boundary B, result that B =  rj(B, 1) C t){A> 1) =  A\, 
thus A\ G T. We have the following relation tj(A, l ) f l F C  r}{A O F\, 1).
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Indeed, if x G t)(A, 1) H F, then there exists an y € A such that x =  rj{y, 1) £ F. 

But d(y, i)(y, 1)) < A, thus y £ F\. From the relation y £ A 0 F\ it follows that 

x =  ri(y, 1) £ rj(A D F\, 1). From (3.2) we have

^ n F A C / c+c', with e' = — /  .
2y/l +  e2

Indeed, since À < 6, we have AO  F\ C AC) F$. But sup f (x) < c +  s' we get
xÇAnFt

AC\ F\ C / c+e . From the properties d’) we have

t](A C » ? ( /+ , 1) C f ~  ^*+*a . (3.5)

From the relations (3.4) and (3.5) we get -Ai fl F  C /  V h-*3 , which is equivalent to

/(x )  < c — » 2 for every x G A\ H F . From this relation we get

“ £ / ( * ) <  J n f  . / ( * ) < « -xei*1 aréFnAi 2 ^

From the relation (3.1) we have c < inf /(x )  < c ------- = = .  which is a contradic-v '  2vT +72
tion.

In the following we give a simplified proof for Theorem 1.5 from [6] without using the 
Ekeland’s variational principle.

Corollary 3.4. ( Theorem 1.10,[6]) Let f  : X  -> R 6e a continuous functional on a 

complete metric space (X, d). We consider a homotopy stable family T  of compact 

subsets of X  with closed boundary B and a dual family J7* of T . Assume that

sup inf f ix )  =  inf m ax/(x) =  c
x £ A  K 1

and suppose that the number c is finite.
Let e > 0 and F a subset of X  dual to the family T  and satisfying the relation

inf f {x)  > c -------y.- -  ■ .
3v/l +  e2

Suppose that 0 <  e <  F) > the for any set A Ç .T  satisfying

sup f { x ) < c +  r ----- - ,
*e a 2\/l +  e2
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then there exists an xe G X  such that:

i) c — 2e < f { x e) < c -f 2e;

ii) \df\{xe) <  e;

in) dist(xeyF) < 2e; 
iv) dist(x£yA) < 2e.

Proof. From the assumption of theorem we see that

S lip  inf /(* )  =  iaS max f(x)  =  c,
F ţ T *  X € F  A Ç .F  a?6A

and exists A G T  and F  G T* such that:

sup f (x)  < c +  
xeA

e
2\/l +  e2 ’

inf f (x) > c —
x£F v 1 -

e

3\/l +  e2
The proof is same to proof of Theorem 3.1, if we choose C := A f! F. We have that C 

is closed, because A is compact set and A\ =  f]{Ay 1) is compact, because the function 

x »-> r}(xy 1) is continuous. Therefore we have A\ G T .

Remark 3.5 If we choose different homotopy stable family we give different min-max 

results. For example if we choose the homotopy stable family T  =  { A =  g{K)  | g G 

C(Ky X)  with g(Ko) =  x (^ o )}, where K  is a compact metric space and Ao C A" we 
obtain a generalization for continuous functionals of the Theorem 4.3, see [26].

4. Equivariant version of min-max result

In this section we give a generalization of some min-max and multiplicity 

results of Ghoussoub [21] for continuous functionals which represent an another proof 

of some min-max and multiplicity results of some results of Corvellec [5]. First we 
recall some definition and results from [3] and [5].

In this section (X y d) will denote a metric space and G a group of isometries of A , i.e.

G =  { g : X - + X \  d(g(x)yg(y)) =  d(xy y)y for all x yy £ X  and g G G}.
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As usual, we say that

A c  X  is G-invariant if g(A) =  A for alh? G G;

h : X  -* ]R is G-invariant if h o g =  h for all g G G; 

h : X  X  is G-equivariant if h o g = g o h for ailg G G.

Definition 4,1. Let (X, d) be a complete G- metric space and let /  > 1R be a
continuous, G-ivariant function and u G X  a fixed element. We denote by \df\G(u) 

the supremum of the a G [0, oo[ such that there exist 8 > 0 and a continuous map

H : B { G u , 8 ) x [ 0 y8] - >R

such that Vu G B{Gu,8) for all t G [0,£] we have

a) ??(.,/) is G-invariant for each t G [0,<f]
b) d(7t(v7t )y v) < t

c) / W M )) < f(v) - a i

The extended real number \df\c{u) is called the G-weak slope of /  at u.

The epigraph function Gj is Lipschitz continuous of constant 1 and is G- 
invariant, because the function /  is G-invariant.

Proposition 4.2. Let f  : X  —> R be a continuous function} G-inariant and let 

(w,£) G epi{f)- Then
r

if / ( « )  =  Çand \df\G(u) <  oo, 

if / ( « )  < t or \df\a{u) =  oo.

We recall a result from Corvellec [5].

Proposition 4.3. Let (X 7 d) be a complete G- metric space and let f  : X  —> M be 

a continuous G-invariant function7 C a closed G-invariant subset of X  and 8, a > 0 
such that

d(u, C) < 8  = >  M/|g(u) > <r.

Then there exists a continuous G-equivariant map q : X  x [0,£] -> X  such that
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1) d(i]{u,t),u)) < t,

2) f{T](u,t)) < f(u),

3) d(u, C ) > 6  T)(u, t) =  «,
4) u e C  = >  f(r)(u,t)) <  /(u ) -  ai.

We have the following equivariant version of Willem deformation lemma.

Theorem  4.4. Let [X,d) be a complet G-metric space, f  : X  -+ M a continuous 

G-mvariant function, C a closed G-invariant subset of X  and c 6 M a real number. 
Let e >  0 number such:

V x £ — 2e,c +  2ej) fl C2t • ti/e have fd/lcix) > e .

Then there exists two real numbers s' G (0,e) and A > 0 and a continuous G- 

equivariant map rj : X  x [0,1] —y X  such that:

a ’)  d(r}(u,t),u) < At, for every t G [0,1].

b’J f(rj(uyt)) < f(u), for every t G [0,1] and x G X .

c') i fx  £ / ”"1([c — 2e,c +  2e]) ( lC2s : t?(M) =  x, V t G [0,1].

d’)  r/(/c+e' n C, 1) C f c~e' with e1 =  •

e 9)  V t G]0,1] and V x G f c H C we have f(r}(tyx)) < c.

Definition 4.5, Let X  be a paracompact space on wich act a compact Lie G. We de
note by Vg (X)  =  { A C X  | A closed invariant subset of X  }. A topological index 

Indo associated to a compact Lie group G is a function Indo : Vg(X) 4 N U  { oo} 

verifying the following properties:

(11) Indo(A) =  0 if and only if A =  0;

(12) If /  : Ai A2 is a G-equivariant continuous map the Indo(Ai) < IndG(A2)\

(13) If A  is a compact invariant, then there exists a closed invariant neighborhood U 

of K y such that IndG(U) =  IndG(K).

(14) IndG{Ai U A2) < IndG(Ai) +  IndG(A2)

(15) If fif is compact invariant set with K  fl /(G ) =  0, then K  contains at least n 

orbits provided indciK) > nt where 1(G) =  { x G X  13g G G \{e} wither =  x}.

ALEXANDRU KRISTÂLY AND CSABA VARGA
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(16) If i f  is a compact invariant set with K  O 1(G) =  0 , then Indc(K)  < -foo.

Definition 4.6. Let X  be a G-paracompact space. We introduce the following no

tation:

Vg (X)  =  { (A, B) I B C A C X  and A, Bare closed and invariant}.

A relative index is a function Inda(, ) : V  —> N U {+00} such that we have:

(Rl) Indai^) verifies the properties (I1)-(I6) of the index and will be denoted 

IndG().

(R2) If /  : (A\yB) —» (A2,B)  is equivariant and f\s is a homeomrphism, then 
Indo(Ai^B) < Indc(A2,B).

(R3) Indo(Ai U A2) < IndaiAi, B) +  IndQ(A2).

Examples:
4.1) If we consider the cat^-category introduced by [19], [14], [27] or .A- category or 

relative ^-category or the A-genus, see [14], [15],[12] we get another class of G-index 
and relative index.

4.2) The relative cohomological index introduced by Fadell and Husseini see [20], the 

eqivariant cup-length see [13] and the ideal valued index see [33], is another relative 

index.

Definition 4.7. Let B a closed subset of M. We shall say that the class T  of subsets 

of M  is G -hom otopy stable with boundary B if:

(a) Every set in T  is G-invaxiant;

(b) Every set in T  contains B\

(c) For any set A G T  and any G-equivariant rj G C([0,1] x M, M)  verifying rj(t} x) =  x 

for all (t, x) G ({0} x M)  U ([0,1] x B) we have 7/(1, A) G T

Examples:

4.3) If we consider the Cat^-category or A- category or relative ^-category 
or the A-genus, see [14], [15],[12] we get another class of G-homotpy stable family.
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4.4) In general, if we consider an index or a relative index we get different G-homotopy 

stable families.
In the next we generalize the result of Ghoussoub in the equivariant case see 

[21], for continuous and G-ivariant functionals.

Theorem  4.8. Let (X, d) be a complete G-metric space and let f  : X  —> M be a 

continuous G-invariant function. Consider a G-homotopy stable family T  of subsets 

of X  with boundary B and a dual family T* of T . Let F  E T* be a fixed which 
element which verifies the following condition

i n f / ( * ) > < : ,  (4 1 )xf-r

where c := inf sup f {x) .
a ^ x£A '

Let e E (0, QïliëÆ.1) anc[ S > 0 be arbitrarly fixed numbers. Then for any A £ F  

which verifies the relation

sup f (x)  < C + ----- /  ,
x£AC\F& 2 \ /l +  e2

then there exists x€ E X  such that the following holds:

(i) c — 2e < f ( x e) < c -f 2e; 

(« )  w \a(xe) < e;
(Hi) dist(x£)F) < 2e;

(iv) dist(x£,A) < 2e.

(4.2)

With the aid of Theorem 4.8 it is easy to prove a result which is very useful 

in state différant multiplicity results. For this we need the following definition.

Definition 4.9. We say that the continuous and G-invariant function /  : M —> R  

verifies the G- Palais-Smale condition at the level c and around the set F (shortly 

G — (PS)f,c) along the sequence (An)n C T  if any sequence (a?n)n C M  verifying 
f{xn) c, \\df\a{xn) —► 0, dist(rn, F) -+ 0 and dist(xn,i4n) —> 0 has a convergent 
subsequence.
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We shall denote by Aoo =  {x  G M  | lim dist(a?,^4n) =  0 }. Under the hy~n—toQ
pothesis of Theorem 4.8 and assuming that /  : M —> R verifies (PS)f)C along a 

minimaxing sequence (An)n, the set F fl Kc fl Aœ is non empty.
We have the following two general multiplicity results of Ghoussoub [21] for 

continuous G-invariant functions. Because the proof it is same way we omit.

Theorem 4.10. (Ghoussoub-Corvellec) Let G ,M and c as in Theorem 4,8 and 
f  : M  M a G-invariant continuous function veryfying the condition G-(PS). 

Let x be an decreasing sequence of G-homotopy stable family with boundaries

and verifying the following excision property with respect to an index In do : 

(E) For every 1 <  j  < j  -f J> < N any A G Fj+p and any U open and invariant 
such that U fl B j  =  0 and Inda(U) > p  we have A\U  G T j .
Let F be a closed invariant set such that for each 1 < j  < N , F verifies (Fl) and

sup/(B ) < in f/(F ) with respect to Tj. Set Cj =  inf sup/(x), d =  in f/(F ) and let
AZFj x£A •

M  =  sup{& : Ck =  d }  V 0. Then we have:

(a) Indo(KCM f lF d  A » )  > M for every minimaxing sequence (4 n)n in Tm-

(b) For every M < i < j+ p  < N such that cj =  Cj+P we have Indc(KCj C\Aoo > 1
for every minimaxing sequence (A^),» in Fj+P. In particular if 1(G) C (M \ F) fl 
( /  < d) then:

(c) f  has at least N distinct critical orbits.
(d) If N  —> oo then f  has an unbounded critical value.

If in the Theorem 4.8 we take Indo =  cat g and F =  M we get the following 
multiplicity result.

Corollary 4.11. Let f  : M  —¥ R a G-invariant continuous function, which satisfied 
the G-(PS) condition and is bounded below, then f  has at least cato(M) distinct 
critical orbit.

This corollary is a generalization for continuous G-invariant function of the 
Fadell multiplicity result for cater, see [19].
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As a consequence of Corollary 4.11 is the main result from [32] and the main result 

from section 1 of [23] and Theorem 4.12 see [26].

Corollary 4.12. Let G be a discrete subgroup of the Banach space X  and f  : X  —> ® 
a G-invariant continuous function wich satisfied the G-(PS) condition and is bounded 
below. If the dimension n of the space generated by G is finit, then f  has at least n -f 1 

distinct critical orbit.

Proof Using Corollary 4.11 we get /  has at least catcC^) distinct critical orbit. But 

cato{X) > cat(X/G) =  catT»(Tn) =  n +  1, where T" is the n-dimensional torus.
Now we consider the group Lie G =  (Sl )korG =  (Zp )*, k > 1 and let X  

be an infinite dimensional ortogonal reprsentation of the group G. Using Corollary 3 

from [12] we get catG(S'A’) =  oo if X G =  0 and cats (SX) =  2 if X G ^  0, where SX- 

denote the unit sphere in X  and X G the fixed point set of the group action G on X.

Corollary 4.13. Let G, X  be as above, and f  : X  —► R  a G-invariant continuous 

function. We suppose that the function f  is bounded from belov on SX and f  satisfies 
the G-(PS) condition on SX. If X G =  0 then f  has an infinitely many distinct 

critical orbits on SX.

The Corollary 4.13 is a generalization of the main result from section 3 of

[23], where the authors are considered Z/p-action.

Corollary 4.14. (Li-Santos) Let E be a complete metric space and f  : X  —» M a 
continuous functional. We suppose that the following conditions holds:

1. f  satisfied the (PS) conditions;

2. There are teo disjoint sets A and B such that A is P-ideal linking to B;

3. sup f (x )  <  inf f {x) ;
X£A

4. There exists a closed subset X  D A in E such that X  \ A is precompact 
and

P  — IndexE(X, A) — P — IndexE{E, A).

Then f  possesses at least one critical value c > infrCjg f (x).

ALEXANDRU KRISTÂLY AND CSABA VARGA
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Proof. We denote by a =  P  — IndexE(E,A.) and 0  =  P  — IndexE(E \ B,A).  Since 

A is P-ideal linking to B, we have 0 D a and 0 ^  a. We define the set

Ea =  { { X )A ) £ £ E : P -/n d e * iî(X ,A ) =  a },

where Se is the class of all paracompact pair (X, A) in E. Note that Ea ^  0 s

ince (X, A)  G Ea and is homotopy stable with boundary A. Thus the conditions of 

Theorem 4.10 are satisfied and the conclusion of this corollar/is true.
If we consider the relative index we have the following result of Ghoussoub 

for G-in variant continuous functions.

Theorem  4.15. (Ghoussoub) Let G and M as in Theorem 4*8 and let f  : M  — M 

be a continuous G-invariant function satifying the G-(PS) condition. Let B and F be 

two disjoint closed and invariant subset of M such that:

(1) k =  IndG{M \ F) < IndG(X , B) =  n.

(2) sup f (B )  <  in f/(F )

(3) 1(G) C B .

Then f  has at least n — k distinct critical orbits. Moreover, if IndG(X> B) =  oo, then 

f  has an unbounded sequence of critical values.

Remark 4-16 If in the Theorem 4.15 we take for relative index the relativ cohomolog

ical index we get a generalization of Theorem 5.6 see [19]. If we take different relative 

index we obtain different multiplicity results for continuous G-invariant function.

References
[1] J.-N. Corvellec, A General Approach to the Min-Max Principle, Journal for Anal, and 

its Applications, Vol. 16(1997), No.2, 405-433.
[2] J.-N. Corvellec, Morse theory for continuous functionals, Joum. of Math. Anal, and 

Appl., 196(1995), 1050-1072.
[3] M., Degiovanni and M., Marzocchi, A critical point theory for nonsmooth functionals, 

Annali Di Mat. Pura ed Appl., (IV), Vol. CLXVII (1994), pp. 73-100.
[4] J.-N., Corvellec, M., Degiovanni and M., Marzocchi, Deformation properties for contin

uous functionals and critical point theory, Top. Meth. in Non. Anal., Vol. 1, (1993), pp. 
151-171.

[5] J.-N. Corvellec, A General Approach to the Min-Max Principle, Joum. for Anal, and 
its Appl., Vol. 16 (1997), No. 2, pp. 405-433.

53



ALEXANDRU KRISTÂLY AND CSABA VARGA

[6] G. Fang, On the existence and the classification of critical points for non-smooth 
functionals, Can. J. Math. 47 (4), 1995, 684-717.

[7] A.Kristâly, D. Motreanu and Cs. Varga, An unified deformation lemma for continuous 
functionals, in preparation,

[8] G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst. 
Henri Poincare, Vol. 11,n° 2, 1994, pp. 189-209.

[9] N. Ribarska, T . Tsachev, M. Krastanov, Deformation lemma, Ljustemik-Schnirellmann 
theory and mountain pass theorem on C 1- Finsler manifolds, Serdica Math. J. 21 (1995), 
239-266.

[10] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory 
and applications, Joum. Funct. Anal. 14, 349-381, 1973.

[11] T. Bartsch, Topological Methods for Variational Problems with Symmetries, Springer 
Verlag,1993.

[12] T.Bartsch, A simple proof of the degree formula for (Z/p)-equivariant map, Math.Z. 
212, 285-292 (1993).

[13] T. Bartsch, M.Clapp , Bifurcation theory for symmetric potential operators and the equi- 
variant cup-length, Math.Z. 204, 341-356 (1990).

[14] M.Clapp, D.Puppe, Invariants of Lusternik- Schnirelmann type and the topology of 
critical sets, Trans. Amer. Math. Soc. 298 (1986)603-620.

[15] M.Clapp, D.Puppe, Critical point theory with symmetries,J.reine angev. Math. 418
(1991), 1-29. *

[16] K.C. Chang, Variational methods for non- differentiable functionals and their applica
tions to pertial differential equations, J. Math. Anal. Appl. 80, 102-129, 1981.

[17] K.C. Chang, Infinite dimensional Morse theory and Multiple Solutions Problems, 
Birchauser, Basel, Boston, 1993.

18] F.H. Clarke, Nonsmooth analysis and Optimization, Wiley, New York, 1983.
19] E. Fadell, The equivariant Lusternik-Schnirelmann method for invariant functional

s and relative cohomological index theory, Topological methods in nonlinear analysis, 
Séminaire de Mathématiques Supérieures 95 (Presses University, Montreal) 41-76.

[20] E.Fadell, S. Husseini, Relative cohomological index theory, Advances in Math., Vol. 64, 
No. 1, 1987.

[21] N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, Jour
nal reine angew. Math. 417 (1991), 27-76.

[22] N. Ghossoub and D. Preiss, A general mountain pass principle for locating and classi
fying critical points, Ann. Inst. H. Poicaré. Anal. Nonlinéaire 6, 321-330, 1989.

[23] D.Goeleven, D.Motrenu, P.D.Panagiotopulos, Multiple Solutions for a Class of Hemi- 
variational Inequalities Involving Periodic Energy Functionals, Math. Methods Appl. 
Sciences, Vol. 20, 547-568 (1997).

[24] W. Krawcewicz and W . Marzantowicz, Some remarks on the Lusternik-Schnirelmann 
methods for non- differentiable functionals invariant with respect to a finite group action, 
Roky Mountain. J. Math, 20, No. 4, 1041-1049, 1990.

[25] , G.Foumier, D.Lupo, M.Ramos, M.Willem Limit relative category and critical point 
theory, prepint.

[26] J. Mahwin, M.Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag 
New York, Berlin, 1989.

[27] , W. Marzantowicz, A G-Lusternik-schnirelmann category of space wirh an action of a 
compact Lie group, Topology 28 (1989) 99-121.

[28] M. Marzocchi,Solutions of Quasilinear Equations, Joum. of Math. Anal, and Apll., 
196(1995), 1093-1104.

[29] P.Pucci, J. Serrin,2&E£enston of the mountain pass theorem, J. Funct. Anal. 59 (1984), 
185-210.

54



A NOTE ON MINIMAX RESULTS FOR CONTINUOUS FUNCTIONALS

[30] P.H. Rabinowitz, Some minimax theorems and applications to nonlinear partial differ
ential equations, Nonlinear Analsis: A collection of papers in honor of Erich Rothe, 
Academic Press, New-York, 161-177, 1988.

[31] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differ
ential equations, CBMSReg. Conf. Ser. MAth. No. 65, Amer. Math. Soc., Providence, 
R.I., 1986.

[32] P. Mironescu, V. Rddulescu, A multiplicity theorem for locally Lipschitz functionals, 
Joum. Math. Anal. Appi. 195, 621-637 (1995)

[33] J.,Dos Santos, The P-ideal linking concept in critical point theory. Non equivariant 
case,Osaka J. Math., 30 (1993), 101-118.

[34] , E.H. Spanier, Algebraic Topology, McGraw-Hill Series in Higher Math., N.Y., (1966).
[35] M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.

”Babeş-Bolyai” University of Cluj-Napoca, Departament of Mathemat
ics, Ro-3400 Çluj-Napoca,Romania

55


