ON SEMI-DECOMPOSABLE PSEUDO-SYMMETRIC WEYL SPACES

GÜLÇIN ÇIVI, HAKAN DEMIRBÜKER, AND ABDŪLKADİR ÖZDEGER

Dedicated to Professor Pavel Enghiş at his $70^{\text {th }}$ anniversary

Abstract

In this paper, we first prove that, if a semi-decomposable Weyl , space W_{n} can be written as the product of two Weyl spaces W_{q} and W_{n-q}^{*} , then $W_{\boldsymbol{n}}$ has homothetic metrics. Next, after having given the definitions of symmetric and pseudo-symmetric Weyl spaces, we have shown that the symmetric Weyl space W_{n} can be written as the product of the symmetric subspaces \bar{W}_{q} and W_{n-q}^{*}, if and only if the complementary vector field of \bar{W}_{q} is the gradient of $\ln \sqrt{\sigma}$. Finally, we prove two theorems concerning semi-decomposable pseudo-symmetric Weyl spaces.

1. Introduction

An n-dimensional manifold W_{n} is said to be a Weyl space if it has a conformal metric tensor $g_{i j}$ and a symmetric connection ∇_{k} satisfying the compatibility condition given by the equation

$$
\begin{equation*}
\nabla_{k} g_{i j}-2 T_{k} g_{i j}=0 \tag{1.1}
\end{equation*}
$$

where T_{k} denotes a covariant vector field [1].
Under a renormalization of the fundamental tensor of the form

$$
\begin{equation*}
\tilde{g_{i j}}=\lambda^{2} g_{i j} \tag{1.2}
\end{equation*}
$$

the complementary vector field T_{k} is transformed by the law

$$
\begin{equation*}
\widetilde{T}_{i}=T_{i}+\partial_{i} \ln \lambda \tag{1.3}
\end{equation*}
$$

where λ is a scalar function defined on W_{n}.

The coefficients $\Gamma_{k l}^{i}$ of the Weyl connection ∇_{k} are given by

$$
\Gamma_{k l}^{i}=\left\{\begin{array}{c}
i \tag{1.4}\\
k l
\end{array}\right\}-g^{i m}\left(g_{m k} T_{l}+g_{m l} T_{k}-g_{k l} T_{m}\right) .
$$

A quantity A is called a satellite with weight $\{p\}$ of the tensor $g_{i j}$, if it admits a transformation of the form

$$
\widetilde{A}=\lambda^{p} A
$$

under the renormalization (1.2) of the metric tensor $g_{i j}[2]$.
The prolonged covariant derivative of a satellite A of the tensor $g_{i j}$ with weight $\{p\}$ is defined by [2]

$$
\begin{equation*}
\dot{\nabla}_{k} A=\nabla_{k} A-p T_{k} A \tag{1.5}
\end{equation*}
$$

2. SEmi-decomposable Weyl spaces

As in the Riemannian case [3], we will say that an n-dimensional Weyl space $W_{n}(n>2)$ is a semi-decomposable space if its metric can be given in some coordinate system by

$$
\begin{gather*}
d s^{2}=g_{i j} d x^{i} d x^{j}=\bar{g}_{a b} d x^{a} d x^{b}+\sigma g_{\alpha \beta}^{*} d x^{\alpha} d x^{\beta} \tag{2.1}\\
(i, j, k, \ldots=1,2, \ldots, n ; a, b, c, \ldots=1,2, \ldots, q ; \alpha, \beta, \gamma, \ldots=q+1, q+2, \ldots, n)
\end{gather*}
$$

where

$$
\begin{equation*}
g_{a b}=\bar{g}_{a b}\left(x^{c}\right), g_{\alpha \beta}=\sigma g_{\alpha \beta}^{*}\left(x^{\gamma}\right) \tag{2.1}
\end{equation*}
$$

and σ is a function of $x^{1}, x^{2}, \ldots, x^{q}$ with weight $\{0\}$. The two parts of (2.1) are the metrics of the two Weyl spaces \bar{W}_{q} and W_{n-q}^{*} which are called the complementary spaces of W_{n}.

Throughout this paper, objects denoted by a bar or a star will respectively assumed to be formed by $\bar{g}_{a b}$ and $g_{\alpha \beta}^{*}$ while $\dot{\nabla}, \dot{\bar{\nabla}}, \dot{\nabla}^{*}$ indicate prolonged covariant differentiation in W_{n}, \bar{W}_{q} and W_{n-q}^{*} respectively. If, in particular $\sigma=1$, then W_{n} reduces to a decomposable space.

Suppose that $\bar{\Gamma}_{b c}^{a}, \bar{R}_{a b c d}, \bar{T}_{a}$ denote, respectively the connection coefficients, the curvature tensor and the complementary vector field of \bar{W}_{q} and let $\Gamma_{\beta \gamma}^{*}, R_{\alpha \beta \gamma \delta}^{*}, T_{\alpha}^{*}$
refer to the subspace W_{n-q}^{*} of a semi-decomposable Weyl space with non-constant function σ. We then have

$$
\begin{equation*}
g_{a b}=\bar{g}_{a b}, g_{\alpha \beta}=\sigma g_{\alpha \beta}^{*}, g^{a b}=\bar{g}^{a b}, g^{\alpha \beta}=\frac{1}{\sigma} g^{* \alpha \beta}, g_{a \alpha}=0, g^{a \alpha}=0 \tag{2.2}
\end{equation*}
$$

From the compatibility condition (1.1) we get

$$
\begin{equation*}
T_{a}=\bar{T}_{a}, T_{\alpha}=T_{\alpha}^{*} \tag{2.3}
\end{equation*}
$$

and consequently the connection coefficients are related by

$$
\begin{gather*}
\Gamma_{b c}^{a}=\bar{\Gamma}_{b c}^{a}, \Gamma_{\beta \gamma}^{\alpha}=\Gamma_{\beta \gamma}^{*} \tag{2.4}\\
\Gamma_{\beta \gamma}^{a}=-\sigma \bar{g}^{a b} \bar{u}_{b} g_{\beta \gamma}^{*}, \Gamma_{a \beta}^{\alpha}=\bar{u}_{a} \delta_{\beta}^{\alpha}, \Gamma_{b \alpha}^{a}=-\delta_{b}^{a} T_{\alpha}^{*}, \Gamma_{a b}^{\alpha}=\frac{1}{\sigma} \bar{g}_{a b} g^{* \alpha \beta} T_{\beta}^{*} \tag{2.5}
\end{gather*}
$$

where

$$
\sigma_{, a}=\frac{\partial \sigma}{\partial x^{a}}, \bar{u}_{a}=\frac{1}{2 \sigma} \sigma_{, a}-\bar{T}_{a} .
$$

On the other hand, using the expression [4]

$$
R_{i j k l}=g_{i h} R_{j k l}^{h}, R_{j k l}^{h}=\frac{\partial}{\partial x^{k}} \Gamma_{j l}^{h}-\frac{\partial}{\partial x^{l}} \Gamma_{j k}^{h}+\Gamma_{k i}^{h} \Gamma_{j l}^{i}-\Gamma_{l i}^{h} \Gamma_{j k}^{i}
$$

for the covariant curvature tensor $R_{i j k l}$, we show that the curvature tensors of W_{n}, \bar{W}_{q} and W_{n-q}^{*} are related by

$$
\begin{align*}
R_{a b c d} & =\bar{R}_{a b c d}+\frac{1}{\sigma} T_{\alpha}^{*} T_{\beta}^{*} g^{* \alpha \beta} \bar{A}_{a b c d} \\
R_{\alpha \beta \gamma \delta} & =\sigma R_{\alpha \beta \gamma \delta}^{*}+\sigma^{2} \bar{u}_{a} \bar{u}_{b} \bar{g}^{a b} A_{\alpha \beta \gamma \delta}^{*} \\
R_{a \alpha b \beta} & =-R_{a \alpha \beta b}=-R_{\alpha a b \beta}=-\sigma g_{\alpha \beta}^{*} \bar{A}_{a b}-\bar{g}_{a b} B_{\alpha \beta}^{*} \tag{2.6}
\end{align*}
$$

where we have put

$$
\begin{equation*}
\bar{A}_{a b c d}=\bar{g}_{a d} \bar{g}_{b c}-\bar{g}_{a c} \bar{g}_{b d}, \bar{A}_{a b}=\dot{\bar{\nabla}}_{b} \bar{u}_{a}+\bar{u}_{a} \bar{u}_{b}, B_{\alpha \beta}^{*}=-\dot{\nabla}_{\beta}^{*} T_{\alpha}^{*}+T_{\alpha}^{*} T_{\beta}^{*} \tag{2.7}
\end{equation*}
$$

These relations are the Weyl versions of the relations obtained in [5] for a Riemannian semi-decomposable space. After some calculations and simplifications we
find that

$$
\begin{align*}
R_{a \beta \gamma \delta} & =\sigma \bar{u}_{a}\left(g_{\beta \gamma}^{*} T_{\delta}^{*}-g_{\beta \delta}^{*} T_{\gamma}^{*}\right), R_{\alpha a \gamma \delta}=\sigma \bar{u}_{a}\left(g_{\alpha \delta}^{*} T_{\gamma}^{*}-g_{\alpha \gamma}^{*} T_{\delta}^{*}\right) \\
R_{\alpha \beta a \delta} & =\sigma \bar{u}_{a}\left(g_{\alpha \delta}^{*} T_{\beta}^{*}-g_{\beta \delta}^{*} T_{\alpha}^{*}\right), R_{\alpha \beta \gamma a}=\sigma \bar{u}_{a}\left(g_{\beta \gamma}^{*} T_{\alpha}^{*}-g_{\alpha \gamma}^{*} T_{\beta}^{*}\right) \\
R_{\alpha b c d} & =T_{\alpha}^{*}\left(\bar{g}_{b c} \bar{u}_{d}-\bar{g}_{b d} \bar{u}_{c}\right), R_{a \alpha c d}=T_{\alpha}^{*}\left(\bar{g}_{a d} \bar{u}_{c}-\bar{g}_{a c} \bar{u}_{d}\right) \\
R_{a b \alpha d} & =T_{\alpha}^{*}\left(\bar{g}_{a d} \bar{u}_{b}-\bar{g}_{b d} \bar{u}_{a}\right), R_{a b c \alpha}=T_{\alpha}^{*}\left(\bar{g}_{b c} \bar{u}_{a}-\bar{g}_{a c} \bar{u}_{b}\right) \\
R_{a b \alpha \beta} & =\bar{g}_{a b}\left(\frac{\partial T_{\alpha}^{*}}{\partial x^{\beta}}-\frac{\partial T_{\beta}^{*}}{\partial x^{\alpha}}\right), R_{\alpha \beta a b}=\sigma g_{\alpha \beta}^{*}\left(\frac{\partial \bar{T}_{a}}{\partial x^{b}}-\frac{\partial \bar{T}_{b}}{\partial x^{a}}\right) \tag{2.8}
\end{align*}
$$

If the Weyl space W_{n} is Riemannian, then all the quantities in (2.8) become zero which explain a well-known result for a semi-decomposable Riemannian space [5].

We first prove the following theorem concerning semi-decomposable Weyl spaces.

Theorem 2.1. A semi-decomposable Weyl space which can be written as the product of two Weyl spaces has homothetic metrics.

Proof. For the conformal change of the metric tensors $g_{a b}, \bar{g}_{a b}$ and $g_{\alpha \beta}^{*}$ we have

$$
\tilde{g}_{i j}=\lambda^{2} g_{i j}, \tilde{\bar{g}}_{a b}=\bar{\lambda}^{2} \bar{g}_{a b}, \tilde{g}_{\alpha \beta}^{*}=\lambda^{* 2} g_{\alpha \beta}^{*}
$$

where

$$
\begin{equation*}
\lambda=\lambda\left(x^{1}, x^{2}, \ldots, x^{n}\right), \bar{\lambda}=\bar{\lambda}\left(x^{1}, x^{2}, \ldots, x^{q}\right), \lambda^{*}=\lambda^{*}\left(x^{q+1}, x^{q+2}, \ldots, x^{n}\right) \tag{2.9}
\end{equation*}
$$

Then, using (2.2) and (2.9) we obtain

$$
\lambda=\bar{\lambda}=\lambda^{*}
$$

which states that $\lambda, \bar{\lambda}, \lambda^{*}$ are equal to the same constant c . But this means that W_{n} has a homothetic metric.

For a Weyl space with a homothetic metric tensor, the complementary vector field T_{k} is invariant under the transformation (1.2). So, such a Weyl space will be Riemannian if and only if the complementary vector field T_{k} is identically zero.

Remark 1. It can be easily seen that a Weyl space W_{n} can not be written as the product of a Weyl space and a Riemannian space, unless W_{n} is Riemannian.

3. Pseudo-symmetric Weyl spaces

The Weyl space W_{n} whose curvature tensor $R_{h i j k}$ satisfies the condition

$$
\begin{equation*}
\dot{\nabla}_{l} R_{h i j k}=2 \lambda_{l} R_{h i j k}+\lambda_{h} R_{l i j k}+\lambda_{i} R_{h l j k}+\lambda_{j} R_{h i l k}+\lambda_{k} R_{h i j l} \tag{3.1}
\end{equation*}
$$

will be called a pseudo-symmetric space and will be denote by $P S W_{n}, \lambda_{i}$ being a covariant vector field with weight $\{0\}$.

Since the weight of $R_{h i j k}$ is $\{2\}$, by (1.5) we get

$$
\begin{equation*}
\dot{\nabla}_{l} R_{h i j k}=\nabla_{l} R_{h i j k}-2 T_{l} R_{h i j k} \tag{3.2}
\end{equation*}
$$

so that (3.1) becomes

$$
\begin{equation*}
\nabla_{l} R_{h i j k}=2\left(T_{l}+\lambda_{l}\right) R_{h i j k}+\lambda_{h} R_{l i j k}+\lambda_{i} R_{h l j k}+\lambda_{j} R_{h i l k}+\lambda_{k} R_{h i j l} \tag{3.3}
\end{equation*}
$$

If $T_{l}=0, W_{n}$ becomes a Riemannian space and (3.3) reduces to

$$
\begin{equation*}
\nabla_{l} R_{h i j k}=2 \lambda_{l} R_{h i j k}+\lambda_{h} R_{l i j k}+\lambda_{i} R_{h l j k}+\lambda_{j} R_{h i l k}+\lambda_{k} R_{h i j l} \tag{3.4}
\end{equation*}
$$

which is the definition of a pseudo-symmetric Riemannian space [6].
We will say that a Weyl space is symmetric if the condition

$$
\begin{equation*}
\dot{\nabla}_{l} R_{h i j k}=0 \tag{3.5}
\end{equation*}
$$

is satisfied. This definition reduces to the definition of a symmetric Riemannian space if we take $T_{k}=0$ in (3.5).

It can be shown that a symmetric Weyl space with $\lambda \neq$ const. is Riemannian since, in this case, the complementary vector field becomes locally a gradient [7].

Theorem 3.1. A semi-decomposable, symmetric elliptio Weyl space $W_{n}(n>2)$ with $\sigma \neq$ const. can be written as the product of two symmetric Weyl spaces \bar{W}_{q} and W_{n-q}^{*}, if and only if $\bar{T}_{a}=\left(\frac{\partial \ln \sqrt{\sigma}}{\partial x^{a}}\right)$.

Proof. Remembering that

$$
\nabla_{l} R_{h i j k}=\partial_{l} R_{h i j k}-\Gamma_{h l}^{m} R_{m i j k}-\Gamma_{i l}^{m} R_{h m j k}-\Gamma_{j l}^{m} R_{h i m k}-\Gamma_{k l}^{m} R_{h i j m}
$$

and using (1.5), (2.4), (2.5), (2.6), (2.7) and (2.8), after some calculations and simplifications we obtain

$$
\begin{align*}
& \dot{\nabla}_{e} R_{a b c d}=\dot{\nabla}_{e} \bar{R}_{a b c d}-\frac{1}{\sigma} g^{* \alpha \beta} T_{\alpha}^{*} T_{\beta}^{*}\left[\bar{A}_{e b c d} \bar{u}_{a}+\bar{A}_{a e c d} \bar{u}_{b}+\bar{A}_{a b e d} \bar{u}_{c}+\bar{A}_{a b c e} \bar{u}_{d}+2 \dot{A}_{a b c d} \bar{u}_{e}\right] \tag{3.6}\\
& \dot{\nabla}_{\eta} R_{\alpha \beta \gamma \delta}=\sigma \dot{\nabla}_{\eta}^{*} R_{\alpha \beta \gamma \delta}^{*}+\sigma^{2} \bar{g}^{a b} \bar{u}_{a} \bar{u}_{b}\left[A_{\eta \beta \gamma \delta}^{*} T_{\alpha}^{*}+\dot{A_{\alpha \eta \gamma \delta}^{*}} T_{\beta}^{*}+A_{\alpha \beta \eta \delta}^{*} T_{\gamma}^{*}+A_{\alpha \beta \gamma \eta}^{*} T_{\delta}^{*}+2 A_{\alpha \beta \gamma \delta}^{*} T_{\eta}^{*}\right) \tag{3.7}
\end{align*}
$$

First, suppose that \bar{W}_{q} and W_{n-q}^{*} are symmetric. By the definition we get

$$
\dot{\bar{\nabla}}_{e} \bar{R}_{a b c d}=0, \dot{\nabla}_{\eta}^{*} R_{\alpha \beta \gamma \delta}^{*}=0
$$

On the other hand, since W_{n} is symmetric we have

$$
\dot{\nabla}_{e} R_{a b c d}=0, \dot{\nabla}_{\eta} R_{\alpha \beta \gamma \delta}=0
$$

Under these symmetry conditions, (3.6) and (3.7) reduce, respectively to

$$
\begin{gather*}
g^{* \alpha \beta} T_{\alpha}^{*} T_{\beta}^{*}\left[\bar{A}_{e b c d} \bar{u}_{a}+\bar{A}_{a e c d} \bar{u}_{b}+\bar{A}_{a b e d} \bar{u}_{c}+\bar{A}_{a b c e} \bar{u}_{d}+2 \bar{A}_{a b c d} \bar{u}_{e}\right]=0 \tag{3.8}\\
\bar{g}^{a b} \bar{u}_{a} \bar{u}_{b}\left[A_{\eta \beta \gamma \delta}^{*} T_{\alpha}^{*}+\dot{A_{\alpha \eta \gamma \delta}^{*}} T_{\beta}^{*}+A_{\alpha \beta \eta \delta}^{*} T_{\gamma}^{*}+A_{\alpha \beta \gamma \eta}^{*} T_{\delta}^{*}+2 \dot{A_{\alpha \beta \gamma \delta}^{*}} T_{\eta}^{*}\right]=0 . \tag{3.9}
\end{gather*}
$$

Since the space W_{n} is assumed to be elliptic, i.e. the metric is positive definite and W_{n-q}^{*} is not Riemannian the factor $g^{* \alpha \beta} T_{\alpha}^{*} T_{\beta}^{*}$ in (3.8) can not be zero. On the other hand, if in (3.9) $\bar{g}^{a b} \bar{u}_{a} \bar{u}_{b}=0$, it follows that $\bar{u}_{a}=0$, i.e. $\bar{T}_{a}=\left(\frac{\partial \ln \sqrt{\sigma}}{\partial x^{a}}\right)$ and consequently (3.8) and (3.9) are automatically satisfied.

Suppose now that

$$
g^{* \alpha \beta} T_{\alpha}^{*} T_{\beta}^{*} \neq 0, \bar{g}^{a b} \bar{u}_{a} \bar{u}_{b} \neq 0 .
$$

In this case (3.8) and (3.9) are reduced to

$$
\begin{array}{r}
{\left[\bar{A}_{e b c d} \bar{u}_{a}+\bar{A}_{a e c d} \bar{u}_{b}+\bar{A}_{a b e d} \bar{u}_{c}+\bar{A}_{a b c e} \bar{u}_{d}+2 \bar{A}_{a b c d} \bar{u}_{e}\right]=0} \\
{\left[\dot{A_{\eta \beta \gamma \delta}^{*}} T_{\alpha}^{*}+\dot{A_{\alpha \eta \gamma \delta}} T_{\beta}^{*}+\dot{A_{\alpha \beta \eta \delta}^{*}} T_{\gamma}^{*}+\dot{A_{\alpha \beta \gamma \eta}^{*}} T_{\delta}^{*}+2 \dot{A_{\alpha \beta \gamma \delta}^{*}} T_{\eta}^{*}\right]=0} \tag{3.9}
\end{array}
$$

Now, transvecting (3.8)' by $\bar{g}^{a d}$ and $\bar{g}^{b c}$ and (3.9)' by $g^{* \beta \gamma}$ and $g^{* \alpha \delta}$, we get respectively

$$
\begin{gather*}
(q-1) \bar{u}_{e}(q+2)=0 \tag{3.10}\\
(n-q+2)(n-q-1) T_{\eta}^{*}=0 \tag{3.11}
\end{gather*}
$$

from which it follows that, since $n>2$ and $T_{\eta}^{*} \neq 0$, the latter case can not happen. This proves the necessity of the condition.

Conversely, suppose that $\bar{T}_{e}=\frac{\partial(\ln \sqrt{\sigma})}{\partial x^{e}}$, i.e. $\bar{u}_{e}=0$. From (3.6) and (3.7) we conclude that

$$
\dot{\nabla}_{e} \bar{R}_{a b c d}=0, \dot{\nabla}_{\eta}^{*} R_{\alpha \beta \gamma \delta}^{*}=0 .
$$

showing that the two subspaces \bar{W}_{q} and W_{n-q}^{*} are symmetric .

Theorem 3.2. For a semi-decomposable $\operatorname{PSW}_{n}(n>2)$, we have

$$
\lambda_{a}=-\bar{u}_{a}, \lambda_{\alpha}=T_{\alpha}^{*}
$$

unless \bar{T}_{a} and T_{α}^{*} are gradients.

Proof. For a $P S W_{n}$ we have from (3.1) that

$$
\begin{gather*}
\dot{\nabla}_{a} R_{\alpha \beta \gamma \delta}+\dot{\nabla}_{a} R_{\beta \alpha \gamma \delta}=2 \lambda_{a}\left(R_{\alpha \beta \gamma \delta}+R_{\beta \alpha \gamma \delta}\right) \tag{3.12}\\
\dot{\nabla}_{\alpha} R_{a b c d}+\dot{\nabla}_{\alpha} R_{b a c d}=2 \lambda_{\alpha}\left(R_{a b c d}+R_{b a c d}\right) \tag{3.13}
\end{gather*}
$$

By using the relations (1.5), (2.5), (2.6) , (2.8), the left hand sides of (3.12) and (3.13) may be put into the form

$$
\begin{gather*}
\dot{\nabla}_{a} R_{\alpha \beta \gamma \delta}+\dot{\nabla}_{a} R_{\beta \alpha \gamma \delta}=-2 \sigma \bar{u}_{a}\left(R_{\alpha \beta \gamma \delta}^{*}+R_{\beta \alpha \gamma \delta}^{*}\right) \tag{3.14}\\
\dot{\nabla}_{\alpha} R_{a b c d}+\dot{\nabla}_{\alpha} R_{b a c d}=2 T_{\alpha}^{*}\left(\bar{R}_{a b c d}+\bar{R}_{b a c d}\right) \tag{3.15}
\end{gather*}
$$

If the relation [7]

$$
\begin{equation*}
R_{i j k l}+R_{j i k l}=2 g_{i j}\left(T_{k, l}-T_{l, k}\right) \tag{3.16}
\end{equation*}
$$

is taken into account, from (3.12),(3.13),(3.14),(3.15), we finally get

$$
\begin{align*}
& g_{\alpha \beta}^{*}\left(T_{\gamma, \delta}^{*}-T_{\delta, \gamma}^{*}\right)\left(\bar{u}_{a}+\lambda_{a}\right)=0 \tag{3.17}\\
& \bar{g}_{a b}\left(\bar{T}_{c, d}-\bar{T}_{d, c}\right)\left(T_{\alpha}^{*}-\lambda_{\alpha}\right)=0 \tag{3.18}
\end{align*}
$$

Since the complementary vector fields \bar{T}_{a} and T_{α}^{*} are not gradients, from (3.17) and (3.18) it follows that

$$
\begin{equation*}
\bar{u}_{a}+\lambda_{a}=0, T_{\alpha}^{*}-\lambda_{\alpha}=0 \tag{3.19}
\end{equation*}
$$

which completes the proof.

Theorem 3.3. For a semi-decomposable $P S W_{n}$ the subspaces \bar{W}_{q} and W_{n-q}^{*} are also pseudo-symmetric unless \bar{T}_{a} and T_{α}^{*} are gradients.

Proof. Using (2.6) , (3.1) , (3.6), (3.7) and (3.19), after some calculations we obtain

$$
\begin{gather*}
\dot{\bar{\nabla}}_{e} \bar{R}_{a b c d}=-2 \bar{u}_{e} \bar{R}_{a b c d}-\bar{u}_{a} \bar{R}_{e b c d}-\bar{u}_{b} \bar{R}_{a e c d}-\bar{u}_{c} \bar{R}_{a b e d}-\bar{u}_{d} \bar{R}_{a b c e} \tag{3.20}\\
\dot{\nabla}_{\eta}^{*} R_{\alpha \beta \gamma \delta}^{*}=2 T_{\eta}^{*} R_{\alpha \beta \gamma \delta}^{*}+T_{\alpha}^{*} R_{\eta \beta \gamma \delta}^{*}+T_{\beta}^{*} R_{\alpha \eta \gamma \delta}^{*}+T_{\gamma}^{*} R_{\alpha \beta \eta \delta}^{*}+T_{\delta}^{*} R_{\alpha \beta \gamma \eta}^{*} \tag{3.21}
\end{gather*}
$$

stating that \bar{W}_{q} and W_{n-q}^{*} are pseudo-symmetric.
Corollary 3.4. For a semi-decomposable $P S W_{n}$ with $\sigma \neq$ const., the condition $\bar{T}_{a}=\frac{\partial}{\partial x^{a}}(\ln \sqrt{\sigma})$ implies that \bar{W}_{q} is symmetric and that W_{n-q}^{*} is pseudo-symmetric provided that T_{α}^{*} is not a gradient.

Proof. The truth of this assertion is clear from (2.6), (3.7), (3.17) and (3.20) if we take $\bar{u}_{a}=0$.

References

[1] NORDEN, A. : Affinely connected spaces, GRFML, Moscow, 1976(in Russian)
[2] HLAVATY, V : Theorie d'immersion d'une W_{m} dans W_{n}, Ann. Soc. Polon. Math., V. 21 (1949), 196-206.
[3] FICKEN, F.A., The Riemannian and Affine Differential Geometry of Product Spaces, Annals of Math.(2) 40 (1939), 892-913.
[4] WEATHERBURN, C.E. : Riemannian Geometry and the Tensor Calculus, Cambridge At the University Press, 1966.
[5] PUSIC,N., On Ricci-Recurrent Semi-Decomposable Riemannian Spaces, Univ. u Novom Sadu Zb. Rad. Prirod. -Mat. Fak. Ser. Mat. 21, 2(1991) 49-59.
[6] GRYCAK, W., On Semi-Decomposable 2-Recurrent Riem. Spaces-Pr. Nauk. Inst. Math. Pol. Wr. 16(1976), 15-25.
[7] CANFES E.. and ZDEER, A. , Some Applications of Prolonged Covariant Differentiation in Weyl Spaces, Journal of Geometry, 1997, Vol.60, 7-16.

Istanbul Technical University, Faculty of Science and Letters, 80626 maslak, Istanbul, TURKEY

