ON BIRECURRENT WEYL SPACES

ELÌF ÖZKARA CANFES AND ABDÜLKADİR ÖZDEĞER

Dedicated to Professor Pavel Enghis at his 70th anniversary

Abstract. In this paper, birecurrent Weyl spaces are defined and it is proved that the birecurrence tensor of a birecurrent Weyl space is symmetric if and only if the space is Riemannian. Moreover, some results concerning birecurrent hypersurfaces of a birecurrent Weyl space are obtained.

1. Introduction.

An *n*-dimensional manifold W_n is said to be a Weyl space if it has a conformal metric tensor g_{ij} and a symmetric connection ∇ satisfying the compatibility condition given by the equation

$$\nabla_{\boldsymbol{k}} g_{\boldsymbol{i}\boldsymbol{j}} - 2T_{\boldsymbol{k}} g_{\boldsymbol{i}\boldsymbol{j}} = 0 \tag{1.1}$$

where T_k denotes a covariant vector field and $\nabla_k g_{ij}$ denotes the usual covariant derivative.

Under a renormalization of the fundamental tensor of the form

$$\check{g}_{ij} = \lambda^2 g_{ij} \tag{1.2}$$

the complementary vector T_k is transformed by the law

$$\bar{T}_{k} = T_{k} + \partial_{k} \ln \lambda \tag{1.3}$$

where λ is a function defined on W_n .

A quantity A is called a satellite with weight $\{p\}$ of the tensor g_{ij} , if it admits a transformation of the form

$$\check{A} = \lambda^p A \tag{1.4}$$

under the renormalization (1.2) of the metric tensor g_{ij} ([1], [2]).

The prolonged covariant derivative of a satellite A of the tensor g_{ij} with weight $\{p\}$ is defined by ([1], [2])

$$\dot{\nabla}_{\boldsymbol{k}}A = \nabla_{\boldsymbol{k}}A - \boldsymbol{p}T_{\boldsymbol{k}}A. \tag{1.5}$$

We note that the prolonged covariant derivative preserves the weight. According to Norden [3], we have

$$x^a_{,ijk} - x^a_{,ikj} = R^h_{ijk} x^a_h \tag{1.6}$$

where R_{ijk}^{h} is the curvature tensor of the Weyl space defined by

$$R_{ijk}^{h} = \frac{\partial}{\partial x^{j}} \Gamma_{ik}^{h} - \frac{\partial}{\partial x^{k}} \Gamma_{ij}^{h} + \Gamma_{lj}^{h} \Gamma_{ik}^{l} - \Gamma_{lk}^{h} \Gamma_{ij}^{l}.$$
(1.7)

The first and the second Bianchi identities for Weyl spaces are, by [4],

$$R_{ijk}^{h} + R_{kij}^{h} + R_{jki}^{h} = 0 (1.8)$$

$$\dot{\nabla}_r R^i_{jkh} + \dot{\nabla}_k R^i_{jhr} + \dot{\nabla}_h R^i_{jrk} = 0.$$
(1.9)

2. Birecurrent Weyl Spaces

A Weyl space $W_n(g_{ij}, T_k)$ is called **recurrent**,[4], if the curvature tensor satisfies the following condition for some non-zero covariant vector field ϕ_s ($\neq T_s$):

$$\dot{\nabla}_s R^h_{ijl} = \phi_s R^h_{ijl}. \tag{2.1}$$

We call a non-flat Weyl space $W_n(g_{ij}, T_k)$ birecurrent if the curvature tensor satisfies the condition

$$\dot{\nabla}_r \dot{\nabla}_s R^h_{ijk} = \phi_{sr} R^h_{ijk} \tag{2.2}$$

for some non-zero covariant tensor field ϕ_{sr} . Transvecting (2.2) by g_{hl} and remembering that the prolonged covariant differentiation preserves the metric, we obtain the equivalent form of (2.2) as

$$\dot{\nabla}_{\mathbf{r}}\dot{\nabla}_{\mathbf{s}}R_{lijk} = \phi_{sr}R_{lijk} , \ R_{lijk} = g_{lh}R^{h}_{ijk}.$$

It is easy to see that a recurrent Weyl space is birecurrent. In fact, by taking the prolonged covariant derivative of (2.1) with respect to u^r , we get

$$\dot{\nabla}_r \dot{\nabla}_s R^h_{ijk} = (\phi_{s,r} + \phi_s \phi_r) R^h_{ijk}. \tag{2.3}$$

with $\phi_{sr} = \phi_{s,r} + \phi_s \phi_r$.

We examine Weyl spaces which satisfy (2.2), but not (2.1).

We remark that the definition of a birecurrent Weyl space agrees with that of a birecurrent Riemannian space if we take the complementary vector field of $W_n(g_{ij}, T_k)$ as zero.

Theorem 2.1. The birecurrency tensor of a birecurrent Weyl space with a nonvanishing scalar curvature is symmetric if and only if the space is locally Riemannian.

Proof. Assume ϕ_{sr} is a symmetric tensor. Transvecting (2.2)' by $g^{hj}g^{ik}$ and remembering that the Ricci tensor R_{ij} and the scalar curvature R of the Weyl space are respectively defined by $R_{ij} = R^h_{ihj}$, $R = R_{ij}g^{ij}$, we get

$$\dot{\nabla}_{\boldsymbol{r}}\dot{\nabla}_{\boldsymbol{s}}R = \phi_{\boldsymbol{s}\boldsymbol{r}}R.\tag{2.4}$$

Changing the order of the indices r and s in (2.4) and subtracting the expression so obtained from (2.4), we have

$$\dot{\nabla}_{[r}\dot{\nabla}_{s]}R = \phi_{[sr]}R.$$

where the bracket indicates antisymmetrization.

Since, by assumption, ϕ_{sr} is a symmetric tensor, we get

$$\dot{\nabla}_{[r}\dot{\nabla}_{s]}R = 0. \tag{2.4}$$

Expanding $\dot{\nabla}_{[r}\dot{\nabla}_{s]}R$ and remembering that R is a satellite of g_{ij} with weight $\{-2\}$, we find that

$$\dot{\nabla}_{[\mathbf{r}}\dot{\nabla}_{\mathbf{s}]}R = \nabla_{[\mathbf{r}}\nabla_{\mathbf{s}]}R + 2\nabla_{[\mathbf{r}}T_{\mathbf{s}]}R = 0 \text{ with } \nabla_{[\mathbf{r}}\nabla_{\mathbf{s}]}R = 0.$$

Since $R \neq 0$, we have

$$\nabla_{[s}T_{r]}=0$$

which means that W_n is locally Riemannian.

The sufficiency of the condition is a well-known fact from the Riemannian Geometry [5]. $\hfill \Box$

Corollary 2.1. If $\dot{\nabla}_r \dot{\nabla}_s R_{ijkh} = 0$, then the Weyl space is locally Riemannian.

Corollary 2.2. If $\dot{\nabla}_{[r}\dot{\nabla}_{s]}R_{ijkh} = 0$, then the Weyl space is locally Riemannian.

Theorem 2.2. The birecurrency tensor ϕ_{is} of a birecurrent Weyl space is the solution of the equation

$$\phi_{is}(R^i_{..h}-R^i_{.h}+\delta^i_hR)=0$$

where $R^i_{..h} = R^i_{jkh}g^{jk}$, $R^i_{.h} = R_{kh}g^{ik}$ and $R = R_{jk}g^{jk}$.

Proof. By taking the prolonged covariant derivative of (1.9) with respect to u^s , we get

$$\dot{\nabla}_{s}\dot{\nabla}_{r}R^{i}_{jkh} + \dot{\nabla}_{s}\dot{\nabla}_{k}R^{i}_{jhr} + \dot{\nabla}_{s}\dot{\nabla}_{h}R^{i}_{jrk} = 0$$
(2.5)

from which, by (2.2), it follows that

$$\phi_{rs}R^{i}_{jkh} + \phi_{ks}R^{i}_{jhr} + \phi_{hs}R^{i}_{jrk} = 0.$$
(2.6)

Contracting (2.6) with respect to *i* and *r* and remembering that

$$R_{ij} = R_{ihj}^h$$
 and $R_{ilh}^h = -R_{ihl}^h$

we get

$$\phi_{is}R^{i}_{jkh} - \phi_{ks}R_{jh} + \phi_{hs}R_{jk} = 0.$$
(2.7)

or,

$$\phi_{is}(R^{i}_{jkh} - \delta^{i}_{k}R_{jh} + \delta^{i}_{h}R_{jk}) = 0.$$
(2.8)

Transvection of (2.8) by g^{jk} yields

$$\phi_{is}(R^i_{..h} - R^i_{.h} + \delta^i_h R) = 0$$
where $R^i_{..h} = R^i_{jkh}g^{jk}$, $R^i_{.h} = R_{kh}g^{ik}$ and $R = R_{jk}g^{jk}$.

Corollary 2.3. If det $A_h^i \neq 0$, then W_n is Riemannian, where $A_h^i = R_{..h}^i - R_{.h}^i + \delta_h^i R$. 20

3. Hypersurfaces of Birecurrent Weyl Spaces.

Let $W_n(g_{ij}, T_k)$ be a hypersurface, with coordinates $u^i (i = 1, 2, \dots, n)$ of a Weyl space $W_{n+1}(g_{ab}, T_c)$ with coordinates $x^a (a = 1, 2, \dots, n+1)$. The metrics of W_n and W_{n+1} are connected by the relations

$$g_{ij} = g_{ab} x_i^a x_j^b \ (i, j = 1, 2, \cdots, n \ ; \ a, b = 1, 2, \cdots, n+1) \tag{3.1}$$

where x_i^a denotes the covariant derivative of x^a with respect to u^i .

It is easy to see that the prolonged covariant derivative of a satellite A, relative to W_n , and W_{n+1} , are related by

$$\dot{\nabla}_{k}A = x_{k}^{c}\dot{\nabla}_{c}A \ (k = 1, 2, \cdots, n \ ; \ c = 1, 2, \cdots, n+1)$$
 (3.2)

Let n^a be the contravariant components of the vector field of W_{n+1} normal to W_n which is normalized by the condition

$$g_{ab}n^a n^b = 1. (3.3)$$

The moving frame $\{x_a^i, n_a\}$ in W_n , reciprocal to the moving frame $\{x_i^a, n^a\}$ is defined by the relations [3]

$$n_a x_i^a = 0 \ n^a x_a^i = 0 \ x_i^a x_a^j = \delta_i^j.$$
(3.4)

Remembering that the weight of x_i^a is $\{0\}$, the prolonged covariant derivative of x_i^a with respect to u^k is found as

$$\dot{\nabla}_k x_i^a = \nabla_k x_i^a = \omega_{ik} n^a \tag{3.5}$$

where ω_{ik} is the second fundamental form. It can be shown that ω_{ik} is a satellite of g_{ij} with weight $\{1\}$.

The generalized Gauss and Mainardi-Codazzi equations are obtained in [4], respectively as

$$R_{pijk} = \Omega_{pijk} + \overline{R}_{dbce} x_p^d x_i^b x_j^c x_k^e$$
(3.6)

$$\dot{\nabla}_k \omega_{ij} - \dot{\nabla}_j \omega_{ik} + \overline{R}_{dbce} x_i^b x_j^c x_k^e n^d = 0, \qquad (3.7)$$

where \overline{R}_{dbce} is the covariant curvature tensor of W_{n+1} and Ω_{pijk} is the Sylvesterian of ω_{ij} defined by $\Omega_{pijk} = \omega_{pj}\omega_{ik} - \omega_{pk}\omega_{ij}$.

In the following we will use the notation

$$B^{ab\cdots cd}_{ij\cdots kl} = x^a_i x^b_j \cdots x^c_k x^d_l \tag{3.8}$$

the same as in [6].

Theorem 3.1. For a hypersurface of a birecurrent Weyl space W_{n+1} with birecurrence tensor ϕ_{ef} we have the identity

$$\dot{\nabla}_{r}\dot{\nabla}_{s}R_{ijkl} - \phi_{rs}R_{ijkl} = \dot{\nabla}_{r}\dot{\nabla}_{s}\Omega_{ijkl} - \phi_{rs}\Omega_{ijkl} + S_{ijkl(sr)} + D_{ijkl}\omega_{sr} + \overline{R}_{abcd}\dot{\nabla}_{r}\dot{\nabla}_{s}B_{ijkl}^{abcd}$$
(3.9)

where

$$S_{ijklsr} = \dot{\nabla}_e \overline{R}_{abcd} x_s^e \dot{\nabla}_r B_{ijkl}^{abcd} , \ D_{ijkl} = B_{ijkl}^{abcd} n^e \dot{\nabla}_e \overline{R}_{abcd} \text{ and } \phi_{rs} = \phi_{ef} B_{rs}^{ej}$$

and the paranthesis () denotes symmetrization.

Proof. By taking the prolonged covariant derivative of Gauss equation with respect to u^s and u^r successively, we have

$$\begin{split} \dot{\nabla}_r \dot{\nabla}_s R_{ijkl} &= \dot{\nabla}_r \dot{\nabla}_s \Omega_{ijkl} + (\dot{\nabla}_f \dot{\nabla}_e \overline{R}_{abcd}) B^{abcdef}_{ijklsr} + (\dot{\nabla}_e \overline{R}_{abcd}) (\dot{\nabla}_r B^{abcde}_{ijkls}) \\ &+ (\dot{\nabla}_f \overline{R}_{abcd}) x^f_r \dot{\nabla}_r \dot{\nabla}_s B^{abcd}_{ijkl} + \overline{R}_{abcd} \dot{\nabla}_s B^{abcd}_{ijkl}. \end{split}$$

If W_{n+1} is birecurrent Weyl, then by the definition $\dot{\nabla}_f \dot{\nabla}_e \overline{R}_{abcd} = \phi_{ef} \overline{R}_{abcd}$ so that we have

$$\begin{split} \dot{\nabla}_{r} \dot{\nabla}_{s} R_{ijkl} &= \dot{\nabla}_{r} \dot{\nabla}_{s} \Omega_{ijkl} + \phi_{ef} \overline{R}_{abcd} B^{abcdef}_{ijklsr} + (\dot{\nabla}_{e} \overline{R}_{abcd}) (\dot{\nabla}_{r} B^{abcde}_{ijkls}) \\ &+ (\dot{\nabla}_{f} \overline{R}_{abcd}) x^{f}_{r} \dot{\nabla}_{r} \dot{\nabla}_{s} B^{abcd}_{ijkl} + \overline{R}_{abcd} \dot{\nabla}_{s} B^{abcd}_{ijkl}. \end{split}$$

By using the Gauss equation (3.6), the above equation can be brought into the form

$$\dot{\nabla}_r \dot{\nabla}_s R_{ijkl} = \phi_{sr} R_{ijkl} + \dot{\nabla}_s \dot{\nabla}_r \Omega_{ijkl} - \phi_{sr} \Omega_{ijkl} + \dot{\nabla}_e \overline{R}_{abcd} \dot{\nabla}_r B_{ijkls}^{abcde} + x_r^f \dot{\nabla}_f \overline{R}_{abcd} \dot{\nabla}_s B_{ijkl}^{abcd} + \overline{R}_{abcd} \dot{\nabla}_r \dot{\nabla}_s B_{ijkl}^{abcd}.$$

where $\phi_{rs} = \phi_{ef} B_{rs}^{ef}$. Hence, by (3.5), the result follows.

 $\mathbf{22}$

Theorem 3.2. If a hypersurface of a Birecurrent Weyl space is birecurrent then

$$\dot{\nabla}_{r}\dot{\nabla}_{s}\Omega_{ijkl} - \phi_{rs}\Omega_{ijkl} + S_{ijkl(sr)} + \omega_{sr}D_{ijkl} + \overline{R}_{abcd}\dot{\nabla}_{r}\dot{\nabla}_{s}B^{abcd}_{ijkl} = 0.$$
(3.10)

or, equivalently,

$$\dot{\nabla}_{[r}\dot{\nabla}_{s]}\Omega_{ijkl} - \phi_{[rs]}\Omega_{ijkl} + \overline{R}_{abcd}\dot{\nabla}_{[r}\dot{\nabla}_{s]}B^{abcd}_{ijkl} = 0.$$
(3.11)

Proof. It is clear from (2.2) and Theorem 3.1.

A hypersurface of a Weyl space is called totally geodesic if $\omega_{ij} = 0$.

Theorem 3.3. Every totally geodesic hypersurface of a birecurrent Weyl space is birecurrent.

Proof. Since the hypersurface is totally geodesic, by putting $\omega_{ij} = 0$ in (3.9) we get the result.

References

- [1] Hlavaty, V : Theorie d'immersion d'une W_m dans W_n , Ann. Soc. Polon. Math., V.21 (1949), 196-206.
- [2] Tsereva, B and Zlatanov, G: On the geometry of nets in the n- dimensional space of Weyl. Journal of Geometry, Vol. 38, (1990), 182-197.
- [3] Norden, A : Affinely Connected Spaces, GRFML, Moscow, 1976.
- [4] Canfes, Ö.E and Özdeğer, A.: Some Applications of Prolonged Covariant Differentiation in Weyl Geometry, Journal of Geometry, Vol.60, 7-16, 1997.
- [5] Graycak, W and Hotlos, M: On the Existence of Certain Types of Riemannian Metrics. Colloquium Mathematicum, Vol XLVII, 31-37(1982).
- [6] Descz, R, Krezemieniewski, S.E and Policht, J: On Totally Umbilical Submanifolds of Conformally Birecurrent Manifolds, Colloquium Mathematicum, Vol LV, 79-96 (1988).

ISTANBUL TECHNICAL UNIVERSITY, FACULTY OF SCIENCE AND LETTERS, 80626 MASLAK, ISTANBUL, TURKEY