HIGHER ORDER EINSTEIN-SCHRÖDINGER SPACES

ATANASIU GHEORGHE

Dedicated to Professor Pavel Enghis at his 70th anniversary

Abstract. In 1945 A.Einstein [6] and E.Schrödinger [10] started form a generalized Riemann space, thas is, a space M associated with a nonsymmetric tensor $G_{ij}(x)$ and desired to find the set of all linear connections $\Gamma^i_{jk}(x)$ compatible with such a metric : $G_{ij/k} = 0$ (see also [1] and [2]). The geometry of this space $(M.G_{ij})$ is called the Einsten - Schrödinger's geometry [3], [4].

The purpose of this paper is to discuss a nonsymmetric tensor field $G_{ij}(x,y^{(1)},...,y^{(k)})$, where $(x,y^{(1)},...,y^{(k)})$ is a point of the k-osculator bundle (Osc^kM,π,M) and to obtain the results for the Einstein - Schrödinger's geometry of the higher order in a natural case.

The fundamental notions and notations concerning the osculator bundle of the higher order are given in the papers [8] [9] and in the recent Miron's book [7] and we suppose them to be known.

For a nonsymmetric tensor field $G_{ij}(x, y^{(1)}, ..., y^{(k)})$ on $Osc^k M$, we have a symmetric tensor field $g_{ij}(x, y^{(1)}, ..., y^{(k)})$ and a skew-symmetric one $a_{ij}(x, y^{(1)}, ..., y^{(k)})$ from the spliting

$$G_{ij} = g_{ij} + a_{ij},$$

where we suppose that

(2)
$$\det \| g_{ij}(x, y^{(1)}, ..., y^{(k)}) \| \cdot \| a_{ij}(x, y^{(1)}, ..., y^{(k)}) \| \neq 0$$

and dim M = n = 2n'.

¹⁹⁹¹ Mathematics Subject Classification: 53C60, 53B50, 53C80.

Key words and phrases. osculator bundle, Einstein-Schrödinger geometry, higher order Lagrange spaces.

We denote

$$||g_{ij}(x, y^{(1)}, ..., y^{(k)})||^{-1} = ||g^{ij}(x, y^{(1)}, ..., y^{(k)})||,$$

 $||a_{ij}(x, y^{(1)}, ..., y^{(k)})||^{-1} = ||a^{ij}(x, y^{(1)}, ..., y^{(k)})||$

We have from $G_{ij|k}=0$, $G_{ij}\stackrel{(\alpha)}{|}_k=0$ $(\alpha=1,...,k)$ the following equations :

(3)
$$g_{ij|k} = 0$$
, $g_{ij} \mid_{k} = 0$, $a_{ij|k} = 0$, $a_{ij} \mid_{k} = 0$ ($\alpha = 1, ..., k$),

which is equivalent to

(4)
$$g_{|k}^{ij} = 0$$
, $g_{|k}^{ij} = 0$, $a_{|k}^{ij} = 0$, $a_{|k}^{ij} = 0$, $a_{|k}^{ij} = 0$ $(\alpha = 1, ..., k)$.

We investigate the set of all N-linear connections $D\Gamma(N)=(L^i{}_{jk}, \quad C^i{}_{jk})$ ($\alpha=1,...,k$) for which we have (3) in the form

٥

$$L^{i}_{jk} = L^{i}_{jk} + A^{i}_{jk}$$
, $C^{i}_{jk} = C^{i}_{jk} + B^{i}_{jk}$ $(\alpha = 1, ..., k)$,

where $D \stackrel{\circ}{\Gamma} (N) = (\stackrel{\circ}{L^{i}}_{jk}, \stackrel{\circ}{C^{i}}_{jk}) (\alpha = 1, ..., k)$ is a fixed N-linear connection on α

 Osc^kM and A^i_{jk} , B^i_{jk} are arbitrary tensor fields of type (1,2).

We obtain for A and for B the equations

 (α)

(5)
$$A_{ik}^{r}g_{rj} + A_{jk}^{r}g_{ir} = g_{ij|k}^{\circ}, A_{ik}^{r}a_{rj} + A_{jk}^{r}a_{ir} = a_{ij|k}^{\circ},$$

(6)
$$\begin{cases} B_{ik}^{r} g_{rj} + B_{jk}^{r} g_{ir} = g_{ij} \Big|_{k}, \\ (\alpha) & (\alpha) \end{cases}$$

$$B_{ik}^{r} a_{rj} + B_{jk}^{r} a_{ir} = a_{ij} \Big|_{k} (\alpha = 1, ..., k)$$

$$(\alpha) & (\alpha)$$

We do not know the general solution of the equation system (5) and (6) We give a solution for these equations in the following special case.

Definition 1. An assymmetric metric (1) is called natural if we have

(7)
$$\Lambda_{is}^{rk}\Phi_{rj}^{hs} = \Phi_{is}^{rk}\Lambda_{rj}^{hs}$$

where

(8)
$$\Lambda_{ij}^{kh} = \frac{1}{2} (\delta_i^k \delta_j^h - g_{ij} g^{kh}) , \Phi_{ij}^{kh} = \frac{1}{2} (\delta_i^k \delta_j^h - a_{ij} a^{kh}).$$

Theorem 1. An assymmetric metric $G_{ij}(x, y^{(1)}, ..., y^{(k)})$ on $Osc^k M$ is natural if and only if there exist a function $\mu(x, y^{(1)}, ..., y^{(k)})$ on $Osc^k M$ such that

$$g_{ir}g_{js}a^{rs}=\mu g_{ij}.$$

Examples.

1. Let $f_j^i(x, y^{(1)}, ..., y^{(k)})$ be a tensor field of type (1,1) which gives an almost complex d-structure on Osc^kM : $f^2 = -\delta$. If we put:

$$a_{ij} = f_i^r g_{rj},$$

then $a_{ij}(x, y^{(1)}, ..., y^{(k)})$ is alternating and $G_{ij} = g_{ij} + a_{ij}$ is an asymmetric metric on Osc^kM . In this case $\mu = -1$.

2. Let $q_j^i(x, y^{(1)}, ..., y^{(k)})$ be a tensor field of type (1,1) which gives an almost product d-structure on $Osc^kM: q^2 = +\delta$. If we put:

$$a_{ij} = q_i^r g_{rj}$$

then $a_{ij}(x, y^{(1)}, ..., y^{(k)})$ is alternate and $G_{ij} = g_{ij} + a_{ij}$ is an asymmetric metric on Osc^kM . In this case $\mu = +1$.

ATANASIU GHEORGHE

Theorem 2. If there exist a N-linear connection on Osc^k M compatible with a natural asymmetric metric $G_{ij}(x, y^{(1)}, ..., y^{(k)})$, then the function μ is constant.

Definition 2. A natural asymmetric metric (1) is called elliptic if $\mu = -c^2$ and hyperbolic if $\mu = c^2$, where c is a positive constant.

The converse of Theorem 2 holds as follows:

Theorem 3. If a natural asymmetric metric (1) is elliptic or hyperbolic, then there

exist N-linear connections
$$D ilde{\Gamma}(N)=(ilde{L}^{i}{}_{jk},\quad ilde{C}^{i}{}_{jk})$$
 compatible with $G_{ij}(x,y^{(1)},...,y^{(k)})$

exist N-linear connections $D\tilde{\Gamma}(N)=(\tilde{L}^{i}{}_{jk},\quad \tilde{C}^{i}{}_{jk})$ compatible with $G_{ij}(x,y^{(1)},...,y^{(k)})$. (α) Let $D\stackrel{\circ}{\Gamma}(N)=(L^{i}{}_{jk},\quad C^{i}{}_{jk})$ be a given N-linear connection, then in the elliptic case (α)

we have

(12)
$$\begin{cases} \tilde{L}^{i}_{jk} = \tilde{L}^{i}_{jk} + \frac{1}{4} \{g^{ir}g_{rj|k} + a^{ir}a_{rj|k} + f^{r}_{j}f^{i}_{r|k} \} \\ & \circ & \circ & \circ \\ \tilde{C}^{i}_{jk} = \tilde{C}^{i}_{jk} + \frac{1}{4} \{g^{ir}g_{rj}|_{k} + a^{ir}a_{rj}|_{k} + f^{r}_{j}f^{i}_{r}|_{k} \} \\ & \circ & \circ & \circ \\ \tilde{C}^{i}_{jk} = \tilde{C}^{i}_{jk} + \frac{1}{4} \{g^{ir}g_{rj}|_{k} + a^{ir}a_{rj}|_{k} + f^{r}_{j}f^{i}_{r}|_{k} \} \end{cases}$$

 $(\alpha = 1, ..., k)$, and in the hyperbolic case we have

$$(\alpha=1,...,k)$$

Theorem 4. The set of all N-linear connections $D \stackrel{*}{\Gamma} (N) = (\stackrel{*}{L^{i}_{jk}}, C^{i}_{ik})$ compati- (α) ble with a natural asymmetric metric (1) on Osck M is given by

(14)
$$L_{jk}^{i} = \tilde{L}_{jk}^{i} + \Lambda_{jq}^{pi} \Phi_{ps}^{rq} Y_{rk}^{s}$$
, $C_{jk}^{i} = \tilde{C}_{jk}^{i} + \Lambda_{jq}^{pi} \Phi_{ps}^{rq} Z_{rk}^{s}$
(\alpha) (\alpha) (\alpha)

where $D\tilde{\Gamma}(N)$ is the N-linear connection in Theorem 3 and Y^i_{jk} , Z^i_{jk} $(\alpha=1,...,k)$ are arbitrary tensor fields on $Osc^k M$.

If we put
$$D \stackrel{\circ}{\Gamma} (N) = D \stackrel{\circ}{\Gamma} (N) = (L^i_{jk}, C^i_{jk})$$
, $(\alpha = 1, ..., k)$ for (α)

 $g_{ij}(x, y^{(1)}, ..., y^{(k)})$, that is:

(15)
$$\begin{cases} L^{i}_{jk} = \frac{1}{2}g^{is} \left(\frac{\delta g_{js}}{\delta x^{k}} + \frac{\delta g_{sk}}{\delta x^{j}} - \frac{\delta g_{jk}}{\delta x^{s}} \right) ,\\ c\\ C^{i}_{jk} = \frac{1}{2}g^{is} \left(\frac{\delta g_{js}}{\delta y^{(\alpha)k}} + \frac{\delta g_{sk}}{\delta y^{(\alpha)j}} - \frac{\delta g_{jk}}{\delta y^{(\alpha)s}} \right) ,\\ (\alpha) \end{cases}$$

the generalized Christoffel symbols we have:

Theorem 5. The canonical N-linear connection compatible with a natural asymmetric metric $G_{ij}(x, y^{(1)}, ..., y^{(k)})$ is given in the elliptic case by:

(16)
$$\begin{cases} L^{i}_{jk} = L^{c}_{jk}^{c} + \frac{1}{4} \{ a^{ir} a_{rj|k}^{c} + f_{j}^{r} f_{r|k}^{i} \} \\ C^{i}_{jk} = C^{i}_{jk}^{i} + \frac{1}{4} \{ a^{ir} a_{rj} \mid_{k} + f_{j}^{r} f_{r}^{i} \mid_{k} \} (\alpha = 1, ..., k) \\ (\alpha) \end{cases}$$

and in the hyperbolic case by

$$\begin{cases} L^{i}_{jk} = L^{i}_{jk} + \frac{1}{4} \{ a^{ir} a_{rj}^{c} - q^{r}_{j} q^{i}_{rk}^{c} \} \\ \\ c \\ C^{i}_{jk} = C^{i}_{jk} + \frac{1}{4} \{ a^{ir} a_{rj} \mid_{k} - q^{r}_{j} q^{i}_{r} \mid_{k} \}, \quad (\alpha = 1, ..., k) \\ \\ (\alpha) \qquad (\alpha) \end{cases}$$

Now, the Einstein equations, electromagnetic tensors, Maxwell equations for the higher order Einstein-Schrödinger geometry can be studied using these canonical N-linear connections.

References

 ATANASIU, GH.: Sur le probleme d'Eisenhart. Rev. Roumaine de Math. Pures et Appl. 16,1971,309-311

[2] ATANASIU, GH., HASHIGUCHI, M. and MIRON, R.: Supergeneralized Finsler S-paces, Rep. Fac. Sci. Kagoshima Univ., Japan, No. 18, 1985, 19-24.

[3] BUCHNER, K.: Of a new solution of Einstein's unified field theory, Progr. Theor. Phys. 48, 1972, 1708-1717

[4] BUCHNER, K.:Energiekomplexe in der Einstein-Schrödinger Geometrie. Tensor N.S., 29, 1975, 267-273.

[5] ENGHIS, P. et TARINA, M.: E-connections dans un espace de Finsler, Proc. Nat. Sem. on Finsler Spaces, Vol. II, 1982, 109-114.

[6] EINSTEIN, A.: A generalization of the relativistic theory of gravitation. Ann. Math. 46, 1945, 578-584.

[7] MIRON, R.: The geometry of higher order Lagrange spaces. Applications to Mechanics and Physics, Kluwer Acad. Pub. FTPH, 1997.

[8] MIRON, R. and ATANASIU, GH.: Differential Geometry of the k-osculator Bundle, Rev. Roumaine Math. pures et Appl., 41, 3/4, 1996, 205-236.

[9] MIRON, R. and ATANASIU, GH.: Higher-Order Lagrange Spaces, Rev. Roumaine Math. pures et Appl., 41, 3/4, 1996, 251-262.

[10] SCHRÖDINGER, E.: The final affine field laws I,II. Proc. Royal Irish Academy, 51A, 1945-1948, 163-171, 205-216.

DEPARTMENT OF GEOMETRY, FACULTY OF SCIENCES, TRANSILVANIA UNIVERSITY, 2200 BRASOV, ROMANIA