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Generalized result on the global existence
of positive solutions for a parabolic reaction
diffusion model with a full diffusion matrix

Nabila Barrouk and Salim Mesbahi

Abstract. In this paper, we study the global existence in time of solutions for a
parabolic reaction diffusion model with a full matrix of diffusion coefficients on
a bounded domain. The technique used is based on compact semigroup methods
and some estimates. Our objective is to show, under appropriate hypotheses, that
the proposed model has a global solution with a large choice of nonlinearities.
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1. Introduction

Diffusion reaction systems have been among the most active and developed math-
ematical subjects for a long time, especially in recent years. The great interest of
mathematicians in the study of this type of problems is due to its great importance
in all fields of science and technology, where we find many applications in physics,
chemistry, environment, biology and other disciplines. Examples include combustion
problems, gas dynamics, population dynamics, industrial catalytic processes, chem-
istry in interstellar media, transport of contaminants in the environment, flame spread,
spread of epidemics, pattern formation. We guide the reader to Britton [5], Fife [6],
Murray [21], [22] and Pierre [24] where he finds many detailed mathematical models in
biology, ecology, and others, and the reader can also find examples and other models
in the references mentioned in this article and the references therein.
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To study reaction diffusion systems, we need a variety of different methods and
techniques in many areas of mathematics, such as numerical analysis, semigroup the-
ory, fixed point methods in appropriate spaces, and many others.

In the works of Mesbahi and Alaa [1], [2], [17] and [18], we find new developed
methods based on truncation functions, fixed point theorems and compactness, etc.

Other techniques based mainly on invariant regions and Lyapunov functional
have been developed by several authors, in some cases, allow to obtain the global
existence of their reaction diffusion systems. The reader can see this technique in
Kouachi’s works, such as [11] and [12].

There is also another very powerful method that relies on compact semigroups,
which is the method we will use in this work. For a better understanding, we send
the reader to the works of Moumeni and Barrouk [19] and [20].

In recent years, particular attention has been paid to the reaction diffusion sys-
tems of two equations with diffusion coefficients and specific reaction functions. This
is due to its broad applications in various sciences, particularly in biology and engi-
neering.

In this paper, we study the existence and uniqueness of solutions for a para-
bolic reaction diffusion model with homogeneous boundary conditions of Neumann
or Dirichlet. To answer these questions, we use a technique based on compact semi-
groups. To get a more complete survey the reader is refered to Lions [14], Pazy [23],
Rothe [25] and Smoller [26].

We are therefore interested in the global existence in time of solutions for the
following parabolic reaction diffusion model with homogeneous Neumann or Dirichlet
boundary conditions

∂u

∂t
− a∆u− b∆v = f (u, v) , in R+ × Ω (1.1)

∂v

∂t
− c∆u− d∆v = g (u, v) , in R+ × Ω (1.2)

with the following boundary conditions

∂u

∂η
=
∂v

∂η
= 0 or u = v = 0 , on R+ × ∂Ω (1.3)

and the initial data

u (0, x) = u0 (x) ∈ L1 (Ω) , v (0, x) = v0 (x) ∈ L1 (Ω) (1.4)

where Ω is an open bounded domain of class C1 in Rn, with boundary ∂Ω, and
∂

∂η
denotes the outward normal derivative on ∂Ω. The diffusion coefficients a, b, c and d
are supposed to be positive such that a ≤ d, and (b+ c)

2 ≤ 4ad, which ensures the
parabolicity of the system and implies that the matrix

A =

(
a b
c d

)
is positive definite, that is the eigenvalues λ1 and λ2 (λ1 < λ2) of its transposed are
positive.



Generalized result on the global existence of positive solutions 361

Several authors have studied the problem proposed in the diagonal case, i.e.
where b = c = 0, see for example Alikakos [3], Masuda [15], Haraux and Youkana [8].

In [19] and [20], Moumeni and Barrouk obtained a global existence result of solu-
tions for reaction diffusion systems with a diagonal and triangular matrix of diffusion
coefficents. By combining the compact semigroup methods and some L1 estimates,
we show the global existence of solutions for a large class of nonlinearities f and g.

In [12], Kouachi and Youkana have generalized the method of Haraux and
Youkana in [8] to the triangular case, i.e. when b = 0.

In the same direction, Kouachi [11] has proved the global existence of solutions
for two-component reaction diffusion systems with a general full matrix of diffusion
coefficients, nonhomogeneous boundary conditions and polynomial growth conditions
on the nonlinear terms and he obtained in [12] the global existence of solutions for
the same system with homogeneous Neumann boundary conditions.

Mebarki and Moumeni [16] consider the problem (1.1)-(1.4) with b > 0 and
c > 0, where the function f and g are assumed to satisfy

sup {|f (r, s)| , |g (r, s)|} ≤ C (r + s+ 1)
m

, ∀r, s ≥ 0

and by adopting the Lyapunov method combined with some Lp estimates, they es-
tablished a result of global existence of the solution.

The system (1.1)-(1.2) is a mathematical model describing various chemical and
biological phenomena. In this case the components u (t, x) and v (t, x) represent chem-
ical concentrations or biological population densities of wells. The reader can find
models similar to this in Britton [5], Fife [6], Murray [21], [22] and the references
therein.

The rest of this paper is organized as follows: In the next section, we present
some hypotheses on our problem and then state the main result. In the third section,
we provide a result on local existence and another on compactness, they are necessary
to fully understand the content of this work. We give in the fourth section some results
concerning the approximate problem. The last section is devoted to prove the main
result.

2. Formulation of the main result

2.1. Assumptions

We consider the problem (1.1)-(1.4) where we assume the following hypotheses:
The Initial data are assumed in the following region

Σ =

{
(u0, v0) ∈ R2, such that

a− λ2

c
v0 ≤ u0 ≤

a− λ1

c
v0

}
(2.1)

and

f

(
a− λ1

c
ξ2, ξ2

)
≤ a− λ1

c
g

(
a− λ1

c
ξ2, ξ2

)
a− λ2

c
g

(
a− λ2

c
ξ2, ξ2

)
≤ f

(
a− λ2

c
ξ2, ξ2

) (2.2)
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for all (ξ1, ξ2) ∈ Σ.
There exist nonnegative constants C, C1 and C2 independent of (ξ1, ξ2) such

that

g (ξ1, ξ2) ≤ Cξ2 , for all (ξ1, ξ2) ∈ Σ (2.3)

−f (ξ1, ξ2) +
a− λ1

c
g (ξ1, ξ2) ≤ C1

(
λ2 − λ1

c
ξ2

)C2

,

for all (ξ1, ξ2) ∈ Σ

(2.4)

and

f (ξ1, ξ2)− a− λ2

c
g (ξ1, ξ2) ≤ C1

(
λ2 − λ1

c
ξ2

)C2

,

for all (ξ1, ξ2) ∈ Σ

(2.5)

2.2. The main result

Multiplying equation (1.2) one time through by a−λ1

c and subtracting equation

(1.1) and another time by −a−λ2

c and adding equation (1.1) we get

∂w

∂t
− λ1∆w = F (w, z) , in R+ × Ω (2.6)

∂z

∂t
− λ2∆z = G (w, z) , in R+ × Ω (2.7)

∂w

∂η
=
∂z

∂η
= 0 or w = z = 0 , on R+ × ∂Ω (2.8)

w (0, x) = w0 (x) and z (0, x) = z0 (x) , in Ω (2.9)

where

w (t, x) = −u (t, x) +
a− λ1

c
v (t, x)

z (t, x) = u (t, x)− a− λ2

c
v (t, x)

(2.10)

and

F (w, z) = −f (u, v) +
a− λ1

c
g (u, v)

G (w, z) = f (u, v)− a− λ2

c
g (u, v)

Suppose that the hypotheses (2.1)-(2.5) are satisfied, then the problem (2.6)-(2.9)
satisfies the following hypotheses:

w0, z0 are nonnegative functions in L1 (Ω) (2.11)

F (0, z) ≥ 0 , G (w, 0) ≥ 0 , for all w, z ≥ 0 (2.12)

There exist nonnegative constants C, C1 and C2 independent of (w, z) such that

F (w, z) +G (w, z) ≤ C (w + z) , for all (w, z) ∈ R2
+ (2.13){

F (w, z) ≤ C1 (w + z)
C2 for all (w, z) ∈ R2

+

G (w, z) ≤ C1 (w + z)
C2 for all (w, z) ∈ R2

+

(2.14)
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The existence of global solutions for the system (2.6)-(2.9) is equivalent to the exis-
tence of (w, z) illustrated by the following main Theorem:

Theorem 2.1. Assume that the hypotheses (2.11)-(2.14) are satisfied, then there exists
a positive global solution (w, z) of the problem (2.6)-(2.9) in the following sense:

w, z ∈ C
(
[0,+∞[ , L1 (Ω)

)
F (w, z) , G (w, z) ∈ L1 (QT ) where QT = ]0, T [× Ω for all T > 0

w (t) = S1 (t)w0 +
∫ t

0
S1 (t− s)F (w (s) , z (s)) ds , ∀t ∈ [0, T [

z (t) = S2 (t) z0 +
∫ t

0
S2 (t− s)G (w (s) , z (s)) ds , ∀t ∈ [0, T [

(2.15)

where S1 (t) and S2 (t) are contraction semigroups in L1 (Ω) generated, respectively,
by λ1∆ and λ2∆.

To prove this Theorem, we will use the results which we will present in the
following section:

3. Preliminaries

3.1. Local existence

Theorem 3.1. Let Ω is an open bounded domain in Rn, and X = L1 (Ω) ∩ H2 (Ω).
The operator A defined by D (A) =

{
u ∈ L1 (Ω) ∩H2 (Ω) ,

∂u

∂η
= 0 or u = 0 on ∂Ω

}
Au = ∆u , for all u ∈ D (A)

is m-dissipative in L1 (Ω) ∩H2 (Ω).

An important result of functional analysis which ensures the local existence of
the solution is the following Lemma:

Lemma 3.2. Let A be a m-dissipative operator of dense domain in a Banach space X
and S (t) a contraction semigroup generated by A, F a locally Lipchitz function, so
∀u0 ∈ X, there exists Tmax = T (u0) such that the problem

u ∈ C ([0, T ] , D (A)) ∩ C1 ([0, T ] , X)

du

dt
−Au = F (u (s))

u (0) = u0

(3.1)

admits a unique solution u verifying

u (t) = S (t)u0 +

∫ t

0

S (t− s)F (u (s)) ds , ∀t ∈ [0, Tmax]
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3.2. Compactness result

In this section, we will give a compactness result of operator L defining the
solution of the problem (3.1) in the case where the initial value equals zero, i.e.
u (0) = 0, with

L (F ) (t) = u (t) =

∫ t

0

S (t− s)F (u (s)) ds , ∀t ∈ [0, T ]

Theorem 3.3. If for all t > 0, the operator S (t) is compact, then L is compact of
L1 ([0, T ] , X) in L1 ([0, T ] , X).

Proof. Step 1. To show that S (λ)L : F → S (λ)L (F ) is compact in L1 ([0, T ] , X),
it suffices to prove that the set {S (λ)L (F ) (t) ; ‖F‖1 ≤ 1} is relatively compact in
L1 ([0, T ] , X) , ∀t ∈ [0, T ].

Since S (t) is compact then, the application t → S (t) is continuous of ]0,+∞[
in £ (X), therefore

∀ε > 0, ∀δ > 0, ∃η > 0, ∀0 ≤ h ≤ η, ∀t ≥ δ, ‖S (t+ h)− S (t)‖£(X) ≤ ε

By choosing λ = δ, we have for 0 ≤ t ≤ T − h

S (λ)u (t+ h)− S (λ)u (t)

=

∫ t+h

0

S (λ+ t+ h− s)F (u (s)) ds−
∫ t

0

S (λ+ t− s)F (u (s)) ds

=

∫ t+h

t

S (λ+ t+ h− s)F (u (s)) ds+∫ t

0

(S (λ+ t+ h− s)− S (λ+ t− s))F (u (s)) ds

We obtain then

‖S (λ)u (t+ h)− S (λ)u (t)‖X ≤
∫ t+h

t

‖F (u (s))‖X ds+ ε

∫ t

0

‖F (u (s))‖X ds

We define v (t) by

v (t) =

{
u (t) if 0 ≤ t ≤ T
0 otherwise

therefore

‖S (λ) v (t+ h)− S (λ) v (t)‖1 ≤ (h+ εT ) ‖F (u (s))‖1
which implies that {S (λ) v, ‖F‖1 ≤ 1} is equi-integrable, then

{S (λ)L (F ) (t) , ‖F‖1 ≤ 1}

is relatively compact in L1 ([0, T ] , X), which means that S (λ)L is compact.
Step 2. We prove that S (λ)L converges to L when λ tends to 0 in L1 ([0, T ] , X).
We have

S (λ)u (t)− u (t) =

∫ t

0

S (λ+ t− s)F (u (s)) ds−
∫ t

0

S (t− s)F (u (s)) ds
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So, for t ≥ δ, we have

‖S (λ)u (t)− u (t)‖ ≤
∫ t

δ

‖S (λ+ s)− S (s)‖£(X) ‖F (u (s))‖ ds

+2

∫ t

t−δ
‖F (u (s))‖ ds

We choose 0 < λ < η, then

‖S (λ)u (t)− u (t)‖ ≤ ε
∫ t

δ

‖F (u (s))‖ ds+ 2

∫ t

t−δ
‖F (u (s))‖ ds

and for 0 ≤ t < δ, we have

‖S (λ)u (t)− u (t)‖ ≤ 2

∫ t

0

‖F (u (s))‖ ds

Since F ∈ L1 (0, T,X), we obtain

‖S (λ)u (t)− u (t)‖ ≤ (εT + 2δ) ‖F (u (s))‖1
So if λ→ 0 then S (λ)u→ u in L1 ([0, T ] , X).

The operator L is a uniform limit with compact linear operator between two Banach
spaces, then L is compact in L1 ([0, T ] , X). �

Remark 3.4. The semigroup S (t) generated by the operator ∆ is compact in L1 (Ω).

Proof. See Pazy [23]. �

4. Approximating problem

For all n > 0, we define the functions wn0 and zn0 by

wn0
= min {w0, n} and zn0

= min {z0, n}

It is clear that wn0
and zn0

verify (2.11), i.e.

wn0 and zn0 are nonnegative functions in L1 (Ω)

Now, we suppose the following problem

∂wn
∂t
− λ1∆wn = F (wn, zn) in [0, T [× Ω

∂zn
∂t
− λ2∆zn = G (wn, zn) in [0, T [× Ω

∂wn
∂η

=
∂zn
∂η

= 0 or wn = zn = 0 on [0, T [× ∂Ω

wn (0, x) = wn0 (x) , zn (0, x) = zn0 (x) in Ω

(4.1)
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4.1. Local existence of the solution of problem (4.1)

We transform the system (4.1) into a first order system in the Banach space
X = L1 (Ω)× L1 (Ω), we obtain

∂ωn
∂t

= Aωn + Ψ (ωn) , t > 0

ωn (0) = ωn0 = (wn0 , zn0) ∈ X
(4.2)

Here ωn = col(wn, zn), the operator A is defined as follows

A =

(
λ1∆ 0

0 λ2∆

)
where

D (A) := {ωn = col (wn, zn) ∈ X : col (∆wn,∆zn) ∈ X}
and the function Ψ is defined by

Ψ (ωn (t)) = col (F (ωn (t)) , G (ωn (t)))

Therefore, the system (4.2) can be returned to the form of the system (3.1),
thus, if (wn, zn) is a solution of (4.2) then it checks the integral equations{

wn (t) = S1 (t)wn0 +
∫ t

0
S1 (t− s)F (wn (s) , zn (s)) ds

zn (t) = S2 (t) zn0
+
∫ t

0
S2 (t− s)G (wn (s) , zn (s)) ds

(4.3)

where S1 (t) and S2 (t) are the contraction semigroups generated, respectively, by λ1∆
and λ2∆.

Theorem 4.1. There exist TM > 0 and (wn, zn) a local solution of (4.2) for all t ∈
[0, TM ] .

Proof. We know that S1 (t) , S2 (t) are contraction semigroups and that Ψ is locally
Lipschitz in ωn, then there exists TM > 0 such that (wn, zn) is a local solution of
(4.2) on [0, TM ] . �

4.2. Positivity of the solution of problem (4.1)

Lemma 4.2. Let (wn, zn) be a solution of problem (4.1), then the region

Σ =
{

(wn0
, zn0

) ∈ R2 such that wn0
≥ 0, zn0

≥ 0
}

= R+ × R+

is invariant for system (4.1).

Proof. Let w̄n (t, x) = 0 in ]0, T [× Ω, then
∂w̄n
∂t

= 0 and ∆w̄n = 0.

According to (4.1), we have

∂wn
∂t
− λ1∆wn − F (wn, zn) = 0 ≥ ∂w̄n

∂t
− λ1∆w̄n − F (w̄n, zn)

and
wn (0, x) = wn0 (x) ≥ 0 = w̄n (0, x)

By comparison we get
wn (t, x) ≥ w̄n (t, x)

which gives us wn (t, x) ≥ 0. In the same way, we get zn (t, x) ≥ 0. �
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4.3. Global existence of the solution of problem (4.1)

To prove the global existence of the solution of problem (4.1), it suffices to find
an estimate of the solution for all t ≥ 0, according to Haraux and Kirane [7], Henry
[9] and Rothe [25]. For this, we give the following Lemma:

Lemma 4.3. Let (wn, zn) be a solution of the problem (4.1), then there exists M (t)
which only depends on t, such that, for all 0 ≤ t ≤ TM , we have

‖wn + zn‖L1(Ω) ≤M (t)

Proof. From (4.1), it comes

∂

∂t
(wn + zn)−∆ (λ1wn + λ2zn) = F (wn, zn) +G (wn, zn)

and by taking into account of (2.13), we have

∂

∂t
(wn + zn)−∆ (λ1wn + λ2zn) ≤ Ĉ (wn + zn)

By integration on Ω and by applying Green’s formula, we find

∂

∂t

∫
Ω

(wn + zn) dx ≤ C
∫

Ω

(wn + zn) dx

which give
∂

∂t

∫
Ω

(wn + zn) dx∫
Ω

(wn + zn) dx
≤ C

By integrating on [0, t], we get

log

(∫
Ω

(wn + zn) dx

∣∣∣∣t
0

)
≤ Ct

which implies ∫
Ω

(wn + zn) dx∫
Ω

(wn0
+ zn0

) dx
≤ exp (Ct)

and for wn0 ≤ w0, zn0 ≤ z0, we have∫
Ω

(wn + zn) dx ≤ exp (Ct) .

∫
Ω

(w0 + z0) dx

Since wn and zn are positive, we get

‖wn + zn‖L1(Ω) ≤M (t) , 0 ≤ t ≤ TM
with

M (t) = exp (Ct) . ‖w0 + z0‖L1(Ω)

�

We can conclude from this estimate that the solution (wn, zn) given by the
Theorem 4.1 is a global solution.

Now, we give the following Lemma which shows the existence of an estimate of
the solution (wn, zn) of the problem (4.1) in L1 (Q) .
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Lemma 4.4. For any solution (wn, zn) of (4.1), there exists a constant K (t) depends
only on t, such that

‖wn + zn‖L1(QT ) ≤ K (t) . ‖w0 + z0‖L1(Ω)

Proof. To prove this Lemma, we will use some of the results demonstrated in the
works of Bonafede and Schmitt [4] and Hollis et al. [10].

We introduce θ ∈ C∞0 (QT ), θ ≥ 0, and Φ ∈ C1,2 (QT ) a nonnegative solution of
the following system 

−∂Φ

∂t
− d1∆Φ = θ on QT

∂Φ

∂η
= 0 on [0, T ]× ∂Ω

Φ (T, ·) = 0 on Ω

(4.4)

According to Ladyzenskaya et al. [13], the system (4.4) has a unique nonnegative solu-
tion. Moreover, for all q ∈ ]1,+∞[ , there exists a nonnegative constant c independent
of θ, such that,

‖Φ‖Lq(QT ) ≤ c ‖θ‖Lq(QT )

According to Bonafede and Schmitt [4], we have∫
QT

S1 (t)wn0
(x)

(
−∂Φ

∂t
− d1∆Φ

)
dxdt =

∫
Ω

wn0
(x) Φ (0, x) dx

and ∫
QT

(∫ t

0

S1 (t− s)F (wn, zn) ds

)(
−∂Φ

∂t
− d1∆Φ

)
dxdt

=

∫
QT

F (wn, zn) Φ (s, x) dxds

where from ∫
QT

(S1 (t)wn0
(x)) θdxdt =

∫
Ω

wn0
(x) Φ (0, x) dx (4.5)

and ∫
QT

(∫ t

0

S1 (t− s)F (wn, zn) ds

)
θdxdt =

∫
QT

F (wn, zn) Φ (s, x) dxds (4.6)

We multiply the first equation of (4.3) by θ, we integrate on QT , and using (4.5) and
(4.6), we obtain∫

QT

wnθdxdt =

∫
QT

S1 (t)wn0
(x) θdxdt

+

∫
QT

(∫ t

0

S1 (t− s)F (wn, zn) ds

)
θdxdt

=

∫
Ω

wn0
(x) Φ (0, x) dx+

∫
QT

F (wn, zn) Φ (s, x) dxds
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We also find∫
QT

znθdxdt =

∫
Ω

zn0
(x) Φ (0, x) dx+

∫
QT

G (wn, zn) Φ (s, x) dxds

and therefore∫
QT

(wn + zn) θdxdt =

∫
Ω

(wn0 (x) + zn0 (x)) Φ (0, x) dx

+

∫
QT

(F (wn, zn) +G (wn, zn)) Φ (s, x) dxds

≤
∫

Ω

(w0 (x) + z0 (x)) Φ (0, x) dx

+

∫
QT

C (wn + zn) Φ (s, x) dxds

Using Holder’s inequality, we deduce∫
QT

(wn + zn) θdxdt ≤ ‖w0 + z0‖L1(Ω) . ‖Φ (0, .)‖L∞(QT )

+C ‖wn + zn‖L1(QT ) . ‖Φ‖L∞(QT )

≤ k1

(
‖w0 + z0‖L1(Ω) + ‖wn + zn‖L1(QT )

)
‖θ‖L∞(QT )

where k1 = max {c, cC}.
Since θ is arbitrary in C∞0 (QT ), this implies

‖wn + zn‖L1(QT ) ≤ k1

(
‖w0 + z0‖L1(Ω) + ‖wn + zn‖L1(QT )

)
If we take k =

k1 (t)

1− k1 (t)
, we find

‖wn + zn‖L1(QT ) ≤ k (t) . ‖w0 + z0‖L1(Ω)

�

5. Proof of the main result (Theorem 2.1)

We are now ready to prove the main result of this work:

Proof of theorem 2.1. We define the application L by

L : (w0, h) 7→ Sd (t)w0 +

∫ t

0

Sd (t− s)h (s) ds

where Sd (t) is the contraction semigroup generated by the operator d∆. According
to the previous Theorem 3.3 and as Sd (t) is compact, then the application L is the
addition of two compact applications in L1 (Q) , which shows that L is also compact
from L1 (QT )× L1 (QT ) in L1 (QT ).

Therefore, there is a subsequence
(
wnj

, znj

)
of (wn, zn) and (w, z) of L1 (QT )×

L1 (QT ), such that (
wnj

, znj

)
→ (w, z)
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Let us now show that
(
wnj

, znj

)
is a solution of (4.3). We have{

wnj (t, x) = S1 (t)wn0 +
∫ t

0
S1 (t− s)F

(
wnj (s) , znj (s)

)
ds

znj (t, x) = S2 (t) zn0 +
∫ t

0
S2 (t− s)G

(
wnj (s) , znj (s)

)
ds

(5.1)

It suffices to show that (w, z) satisfies (2.15). It is clear that if j → +∞, we have the
following limits

F
(
wnj , znj

)
→ F (w, z) and G

(
wnj , znj

)
→ G (w, z) , a.e. (5.2)

and

wn0
→ w0 , zn0

→ z0

Thus, to show that (w, z) satisfies (2.15), we have to show that

F
(
wnj

, znj

)
→ F (w, z) and G

(
wnj

, znj

)
→ G (w, z) in L1 (QT )

We integrate the two equations of (4.1) on QT taking into account that

−λ1

∫
QT

∆wnj
dxdt = 0 and − λ2

∫
QT

∆znj
dxdt = 0

we have ∫
Ω

wnjdx−
∫

Ω

wn0dx =

∫
QT

F
(
wnj , znj

)
dxdt∫

Ω

znj
dx−

∫
Ω

zn0
dx =

∫
QT

G
(
wnj

, znj

)
dxdt

which give

−
∫
QT

F
(
wnj , znj

)
dxdt ≤

∫
Ω

w0dx (5.3)

−
∫
QT

G
(
wnj , znj

)
dxdt ≤

∫
Ω

z0dx (5.4)

We denote

Nn = C1

(
wnj + znj

)C2 − F
(
wnj , znj

)
Mn = C1

(
wnj + znj

)C2 −G
(
wnj , znj

)
According to (2.13), it is clear that Nn and Mn are positive. From (5.3) and (5.4), we
obtain ∫

QT

Nndxdt ≤ C1

∫
QT

(
wnj

+ znj

)C2
dxdt+

∫
Ω

w0dx∫
QT

Mndxdt ≤ C1

∫
QT

(
wnj

+ znj

)C2
dxdt+

∫
Ω

z0dx

The Lemma 4.4 gives us∫
QT

Nndxdt < +∞ and

∫
QT

Mndxdt < +∞
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which implies∫
QT

∣∣F (wnj
, znj

)∣∣ dxdt ≤ C1

∫
QT

(
wnj

+ znj

)C2
dxdt+

∫
QT

Nndxdt < +∞

and ∫
QT

∣∣G (wnj
, znj

)∣∣ dxdt ≤ C1

∫
QT

(
wnj

+ znj

)C2
dxdt+

∫
QT

Mndxdt < +∞

The functions

ϕn = Nn + C1

(
wnj

+ znj

)C2

ψn = Mn + C1

(
wnj

+ znj

)C2

are from L1 (QT ) and positive, moreover∣∣F (wnj
, znj

)∣∣ ≤ ϕn and
∣∣G (wnj

, znj

)∣∣ ≤ ψn a.e.

We combine this result with (5.2) and by applying Lebesgue’s dominated convergence
Theorem, we obtain

F
(
wnj

, znj

)
→ F (w, z) and G

(
wnj

, znj

)
→ G (w, z) in L1 (QT )

By passing to the limit of (5.1) when j → +∞ in L1 (QT ), we find{
w (t) = S1 (t)w0 +

∫ t
0
S1 (t− s)F (w (s) , z (s)) ds

z (t) = S2 (t) z0 +
∫ t

0
S2 (t− s)G (w (s) , z (s)) ds

which implies that (w, z) satisfies (2.15). Therefore (w, z) is a solution of (2.6)-(2.9).
�

We conclude by (2.10) the existence in time of solutions of the reaction diffusion
system (1.1)-(1.4).
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