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TH E SCH W ARZSCH ILD -TYPE T W O -B O D Y  PROBLEM: A  
TOPOLOGICAL V IE W

F E R E N C  S Z E N K O V IT S  A N D  V A SIL E  M IO C

A b stra ct. The Schwaxzschild-type two-body problem (associated to a force 

function o f the form A/r +  £ / r 3, A yB  >  0), which models several problems 
of nonlinear particle dynamics, is being tackled from the standpoint o f topol­
ogy. The corresponding mechanical system is fully characterized, and the first 
integrals o f energy and angular momentum are pointed out. These integrals 
are used to settle the invariant manifolds and the bifurcation set for the whole 
allowed interplay among the field parameters, the total energy level, and the 
angular momentum. The orbits on each manifold are interpreted in terms of 

physical motion. Besides recovering motions characteristic to classical models, 
entirely new types of motion are found.

1. Introduction

The theory of orbits in a force field characterized by a force function of the 

form A/r +  B/r3 (with r =  distance of a particle to the field source; A ,B  > 0 con­

stants) constitutes an extensively discussed subject. This theory, which models concrete 

problems belonging to astrophysics, stellar dynamics, celestial mechanics, astrodynamics, 

cosmogony, etc., was approached by various methods, both qualitative and (especially) 

quantitative.

Many authors studied quantitatively the motion in such a field (see, e.g., Brum- 

berg, 1972; Chandrasekhar, 1983; Damour and Schaefer, 1986), generally in a relativistic 

context, showing that the analytic solution of the problem can be obtained in closed form 

by means of elliptic functions. But the analytic form of these solutions hides the general 

geometric properties of the model.

As to the rather few qualitative approaches, they dealt mainly with the reg­

ularization of motion equations (see, e.g., Saari, 1974; Belenkii, 1981; Szebehely and * 1

1991 Mathematics Subject Classification. 58F05; 70F05; 70F16.
Key words and phrases. topology - classical mechanics - dynamical systems - two-body problem.

1 IT



FERENC SZENKOVITS AND VASILE MIOC

Bond, 1983; Cid et al, 1983). In addition, the quoted authors used only Sundman-type 

transformations of time.

Stoica and Mioc, 1997 studied qualitatively the problem for any A ^  0, B  ^  0, 

and provided a complete geometric and physical description of the orbits.

Following Smale’s topological program (see Smale, 1970, Iacob, 1973 or Abra­

ham and Marsden, 1981), the aim of this paper is to determine the topological type of 

the energy-momentum invariant manifolds, determined by the first integrals of energy 

and angular momentum, and the set of bifurcation points, in whose neighbourhood the 

topological type of the invariant manifolds is changing. Using the geometrical proper­

ties of the invariant manifolds, the types of physical motion are briefly characterized for 

A ,B >  0.

2. Basic Equations

It is clear that the Schwarzschild-type two-body problem can be reduced to a 

central force problem (e.g. Arnold 1976). Within this framework, the motion of the 

particle is confined to a plane. We shall use polar coordinates (r,9), and follow the 

treatment presented by Abraham and Marsden (1981, p.656).

The mechanical system with symmetry which describes the problem is (M, K, V, G),

where:

M — (0, oo) x S1 is the space of the polar coordinates (r,9), regarded as a 

Riemannian manifold endowed with the metric

dots marking time-differentiation;

K  is the kinetic energy of the metric above, whose expression on the cotangent

((f*i,0i,ri,0i), (r2,02,r2,02))  = h h  + rir2M 2,

bundle T*M  is

(1) K {r,0 ,pr,pe) =  ip l+ p 2e/r2)/2,

pr, pe denoting the momenta;

V is the potential energy, given by

(2 ) V(r,0) =  - A / r-B / r3;
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G — 5 0 (2 ) ^  S1 is the Lie group that acts on M  by rotations denoting 

isomorphism). Observe that G acts by isometries and leaves V  invariant (cf. Abraham 

and Marsden 1981).

The Hamiltonian of the system is

(3) H(r, 0,pr,Pe) =  (p l+  Pg/r2) / 2 -  A/r -  B/r3.

The momentum mapping J :T *M  — > R  is given by J(r>0,pr,pe) =  p$, and is 

invariant under the action of G .

Consider x  =  (r,0) € M  and the mapping Jx : T*M  — ► R . The expression 

Jjc : (Pr,Pe) i— > Pe of this mapping shows that Jx is surjective for all x  e  M. In other 

words,

A =  {x  G M  I Jx : T*M  — > R  is not surjective} =  0.

Note that dJ =  dp$, therefore J has no critical points on T*M.

The problem admits the first integrals of energy and angular momentum, respec­

tively:

(4) H (r,9,pTtpg) =  K (r,6 ,pr,pe) +  V (r) =  h,

(5) J(r,0,pr,p e)= p 9  =  C,

where h and C  stand for the integration constants of energy and angular momentum.

3. Effective Potential Energy

Eliminating P* between (3)-f(4) and (5), one gets

(6) p2r =  2 (h -V c ), 

in which

(7) Vc  (r ) =  V(r) +  C 2/(2 r2) =  -A /r  +  C2/(2 r2) -  B/r3

denotes the so-called effective potential energy.

Settled the constant angular momentum (7, one sees by (6) that the real motion 

is possible only in the domains Vc (r) <  h, where h is a fixed total energy level.

The graph of the function Vc =  Vc (r) in different cases, for all values C de­

pending on A , B  is plotted in Figure 1.
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FIGURE 1. The graph of the effective potential energy:

4. Bifurcation Set and Topological Type of Invariant Manifold

To study the motion, we use the invariant manifolds Ihtc  =  {H  x J )” 1 (ft, (7), 

whose defining equations are (4) and (5). Obviously, the topological type of Ih,c depends 

on the condition Vc (r ) <  ft, and because of the rotational symmetry, each component 

of Ihtc  is a product, S 1 being one of the factors. Using the graphs of Figure 1, and 

observing their significance as regards the allowed domains for r to have real motion, we 

are able to identify the invariant manifolds diffeomorphic ( « )  with on which the 

phase curves lie.

To synthesize all possible cases, les us establish and plot the bifurcation set 

H x J , defined as the set of couples (ft, C ) € R 2 for which the energy-momentum mapping 

H  x J fails to be locally trivial, in other words, those points in whose neighbourhood the 

topological type of the invariant manifolds is changing (see e.g. Abraham and Marsden 

1981).
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First we determine the set of critical values E,/ /x  ̂ C £ / fX j ,  defined by the 

conditions

2
(8) Z'h x j  =  {(h, C ) e n 2 \h =  Voir), V ç i r )  =  0} =  (J  {(ft, C) € R 2 | h =  ( M i } .

i= 1
where

(9) (^cr)i — * — 1, 2;

and

(.0) ri = ^ + J z 1.)H‘ f ^ î g g  i = 1,2.

are the critical points of the effective potential Vfc(r), (Vç(r) =  0). 

After some computations we obtain the set of critical values:

(11) EWxj =  {(ft, C) € R 2 I 108B2h2 +  2C2{18AB -  C4)h +  A2(16ÆB -  C4) =  0}.

The graph of this curve is plotted in Figure 2 and has two components, defined 

for i =  l ,2  by:

(12)

{(h,C) e R 2 1 h =  (/icr)J  =  {(h ,C ) € R 2 I h = C ^C * -  1M B ) +  ( - 1 ) <+1(C'4 -  12AB)î
108B2 }

Note that the complete picture of the set of critical values is symmetric to the 

(7 =  0 axis, and this symmetry occurs in all the nexts.

The complete bifurcation set is:

(13) J =  V U  { ( h, C) e  R 2 I h =  0}.

For different values of the energy and angular momentum constants we found 

seven cases. The corresponding sets in the (ft, C) plane are noted in Figure 2 with (a), 

(b), ..., (g). In different cases the topological type of the invariant manifolds and the 

type of orbits in the configuration space is:

(a) If the energy and angular momentum constants are in the domain {(ft, (7) € 

R2 1 ft > 0, ft >  (ftcr)i ((7)}, then the invariant manifold is diffeomorphic with the reunion 

of two disjont cylinders {Ih,n «  S° x S1 x R ), and the corresponding orbits in configuration
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F igure  2. The bifurcation set.

space are ejecting from collision and tending to infinity (0 —> oo), or coming from infinity 

and tending to collisions (oo - »  0).

(b) If (h,C) € { ( h, C) € R 2 J h >  0,ft <  (ftcr)i(C)}, then Ih%c «  5 ° x S1 x R,

but in this case the orbits are comming from infinity and then tending back to infinity 

(oo —y oo), or are ejecting from collision and tending back to collision (0 0).

(c) If (h, C) e  {(/i, C) G R 2 I h < 0, (hcr)2 <  h <  (/iCr)i}> then Ihtc  «  {Sl x R)U 

(5 1 x S'1), is the disjont reunion of a cylinder and a torus. The orbits type is (0 -* 0), 

or there are periodic or quasiperiodic orbits (P /Q P).

(d) If (h,C) € { ( h,C ) € R 2 I (h <  0,h < (hcr)2) or (h <  0,/i >  (hCr)i)} , then 

h ,c  & (S1 x R ) (one cylinder), and the orbits are of the (0 -»  0) type.

(e) If {h,C) € {(h , C) € R 2 I {h =  {hcr)i ) ,C 4 > 12AB}, then Ih%c is diffeo 

morphic with the reunion of two cylinders which are intersecting in a circle. In this case 

unstable equilibrium orbits (UE) may exist, or the orbits are of the type (0 —► UE), (UE

0), (oo -> UE), (UE -* oo).
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(f) If (ft, C) G {(ft, C) € R 2 I (ft =  (ftCr)2), C4 >  12ABj then Ih,c  «  (S1 xR)U S1 
(disjont reunion of a cylinder and a circle), and the orbits are of type (0 ->■ 0) or (SE), 

stable equilibrium.

(g) If C4 =  12AB,h =  (hcr)l =  (ftCr)2 =  -  , then I^ c  is homeomorphic

(and not diffeomorphic in this case) with S1 x R , and the orbits are of type (UE), (0 

UE) or (UE -> 0).
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