SUFFICIENT CONDITIONS FOR STARLIKENESS II

PETRU T. MOCANU AND GHEORGHE OROS

Abstract. In this paper we study a differential subordination of the form:

$$\alpha z p'(z) + \alpha p^2(z) + (\beta - \alpha) p(z) \prec h(z),$$

where

$$h(z) = \alpha n z q'(z) + \alpha q^{2}(z) + (\beta - \alpha) q(z),$$

with $\alpha > 0$, $\alpha + \beta > 0$, and the function q is convex with q(0) = 1, and

$$Req(z) > \frac{\alpha - \beta}{2\alpha}.$$

Our results are obtained by using the method of differential subordinations developed in [1], [2] and [3]. For $\beta = 1$, $q(z) = 1 + \lambda z$ and n = 1 this problem was studied in [4].

1. Introduction and preliminaries

Let A_n denote the class of functions f of the form:

$$f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \dots, z \in U,$$

which are analytic in the unit disc U.

Let $A = A_1$ and let $S^* = \left\{ f \in A, Re \frac{zf'(z)}{f(z)} > 0, z \in U \right\}$ be the class of starlike functions in U.

We will use the following notions and lemmas to prove our results.

If f and g are analytic functions in U, then we say that f is subordinate to g written $f \prec g$, of $f(z) \prec g(z)$, if there is a function w analytic in U, with w(0) = 0, |w(z)| < 1 for $z \in U$, such that f(z) = g(w(z)), for $z \in U$. If g is univalent then $f \prec g$, if and only if f(0) = g(0) and $f(U) \subset g(U)$.

Lemma A. ([1], [2], [3]) Let q be univalent in \overline{U} with $q'(\zeta) \neq 0$, $|\zeta| = 1$, q(0) = a and let $p(z) = a + a_n z^n + \ldots$ be analytic in U, with $p(z) \not\equiv a$, and $n \ge 1$.

¹⁹⁹¹ Mathematics Subject Classification. 30C45.

If $p(z) \not\prec q(z)$ then there exist points $z_0 \in U$ and $\zeta_0 \in \partial U$ and there is $m \geq n$ such that:

$$egin{aligned} (i) \ p(z_0) &= q(\zeta_0) \ (ii) \ z_0 p'(z_0) &= m \zeta_0 q'(\zeta_0) \end{aligned}$$

The function L(z,t), $z \in U$, $t \in I = [0, \infty)$ is called a Loewner chain or a subordination chain if $L(z,t) = a_1(t)z + a_2(t)z^2 + a_3(t)z^3 + \dots$ for $z \in U$ is analytic and univalent in U for any $t \in I$ and if $L(z,t_1) \prec L(z,t_2)$ when $0 \le t_1 \le t_2$.

Lemma B. ([7]) The function $L(z,t) = a_1(t)z + a_2(t)z^2 + ...$ with $a_1(t) \neq 0$ for $t \geq 0$ and $\lim_{t\to\infty} |a_1(t)| = \infty$ is a subordination chain if and only if there are the constants $r \in [0,1]$ and M > 0 such that:

(i) L(z,t) is analytic in |z| < r for any $t \ge 0$, locally absolute continuous in $t \ge 0$ for each |z| < r and satisfies $|L(z,t)| \le M|a_1(t)|$ for |z| < r and $t \ge 0$.

(ii) There is a function p(z,t) analytic in U for any $t \ge 0$ measurable in $[0,\infty)$ for any $z \in U$, with Re p(z,t) > 0 for $z \in U$, $t \ge 0$ such that

$$\frac{\partial L(z,t)}{\partial t} = z \frac{\partial L(z,t)}{\partial z} p(z,t), \text{ for } |z| < r \text{ and for almost any } t \geq 0.$$

2. Main results

Theorem 1. Let q be a convex function in U, with q(0) = 1,

$$Re q(z) > \frac{\alpha - \beta}{2\alpha}, \quad \alpha > 0, \quad \alpha + \beta > 0$$
 (1)

and let

$$h(z) = \alpha n z q'(z) + \alpha q^2(z) + (\beta - \alpha) q(z)$$
⁽²⁾

If the function $p(z) = 1 + p_n z^n + \dots$ satisfies the condition:

$$\alpha z p'(z) + \alpha p^2(z) + (\beta - \alpha) p(z) \prec h(z)$$
(3)

where h is given by (2) then $p(z) \prec q(z)$ and q is the best dominant.

Proof. Let

$$L(z,t) = \alpha(n+t)zq'(z) + \alpha q^{2}(z) + (\beta - \alpha)q(z) = \psi(q(z), (n+t)zq'(z))$$
(4)

If t = 0 we have $L(z, 0) = \alpha nzq'(z) + \alpha q^2(z) + (\beta - \alpha)q(z) = h(z)$. We will show that condition (3) implies $p(z) \prec q(z)$ and q(z) is the best dominant.

From (4) we easily deduce:

$$rac{zrac{\partial L(z,t)}{\partial z}}{rac{\partial L(z,t)}{\partial t}}=(n+t)\left[1+rac{zq''(z)}{q'(z)}
ight]+2q(z)+rac{eta-lpha}{lpha}$$

and by using the convexity of q and condition (1) we obtain:

$$Re\frac{z\frac{\partial L(z,t)}{\partial z}}{\frac{\partial L(z,t)}{\partial t}} \geq 0$$

. Hence by Lemma B we deduce that L(z,t) is a subordination chain. In particular, the function h(z) = L(z,0) is univalent and $h(z) \prec L(z,t)$, for $t \ge 0$. If we suppose that p(z) is not subordinate to q(z), then, from Lemma A, there exist $z_0 \in U$, and $\zeta_0 \in \partial U$ such that $p(z_0) = q(\zeta_0)$ with $|\zeta_0| = 1$, and $z_0 p'(z_0) = (n+t)\zeta_0 q'(\zeta_0)$, with $t \ge 0$. Hence

$$\psi_0 = \psi(p(z_0), z_0 p'(z_0)) = \psi(q(\zeta_0), (n+t)\zeta_0 q'(\zeta_0)) = L(\zeta_0, t), \ t \ge 0,$$

Since $h(z_0) = L(z_0, 0)$, we deduce that $\psi_0 \notin h(U)$, which contradicts condition (3). Therefore, we have $p(z) \prec q(z)$ and q(z) is the best dominant.

If we let $p(z) = \frac{zf'(z)}{f(z)}$, where $f \in A$, then Theorem 1 can be written in the following equivalent form:

Theorem 1'. Let q be a convex function with q(0) = 1, and

$$Re q(z) > rac{lpha - eta}{2lpha}, \ lpha > 0, \ lpha + eta > 0.$$

If $f \in A_n$, with $\frac{f(z)}{z} \neq 0$, $z \in U$, satisfies the condition:

$$\frac{\alpha z^2 f''(z)}{f(z)} + \beta \frac{z f'(z)}{f(z)} \prec h(z), \quad z \in U$$

 $\frac{zf'(z)}{f(z)} \prec q(z)$

then

an q is the best dominant.

3. Particular cases

1) If we let
$$\alpha = 1, \beta \ge 1$$
, and $q(z) = \frac{1+z}{1-z}$, then

$$h(z) = \frac{2nz}{(1-z)^2} + \left(\frac{1+z}{1-z}\right)^2 + \gamma \frac{1+z}{1-z} \quad \text{with} \quad \gamma = \beta - 1 \ge 0$$

If $z = e^{i\theta}$, $0 \le \theta \le 2\pi$, then

$$h(e^{i\theta}) = \frac{-n}{2\sin^2\frac{\theta}{2}} - \cot^2\frac{\theta}{2} + \gamma i \cot\frac{\theta}{2} = u + iv$$

and the domain D=h(U) is the exterior of the parabola $u = -\frac{n}{2} - \frac{n+2}{2\gamma^2}v^2$. If $\gamma = 0$, then D is the complex plane slit along the half-line v = 0 and $u \leq -\frac{n}{2}$.

Using Theorema 1' we deduce the following criterion for starlikeness:

If
$$f \in A_n$$
 and $\frac{z^2 f''(z)}{f(z)} + \beta \frac{z f'(z)}{f(z)} \in D$ then $f \in S^*$.

2) If we let $\alpha = 1$, $\beta = 0$, and $q(z) = \frac{1}{1-z}$, then, $h(z) = \frac{z(n+1)}{(1-z)^2}$ and h(U) is the complex plane slit along the half-line v=0 and $u \leq -\frac{n+1}{4}$. Using Theorema 1' we deduce the following criterion for starlikeness of order $\frac{1}{2}$: If $f \in A_n$ with $\frac{f(z)}{z} \neq 0$ satisfy the condition:

$$rac{z^2 f''(z)}{f(z)} \prec rac{(n+1)z}{(1-z)^2} \quad ext{then} \quad Rerac{z f'(z)}{f(z)} > rac{1}{2}$$

In particular:

$$Re\left[\frac{z^2 f''(z)}{f(z)}\right] > -\frac{n+1}{4} \quad \Rightarrow \quad Re\frac{zf'(z)}{f(z)} > \frac{1}{2} \tag{5}$$

Example 1.

$$\text{If} \quad f(z) = \frac{1}{\lambda} \sin \lambda z \quad \text{then} \quad f \in A_2, \quad \text{and} \quad \frac{f''(z)}{f(z)} = -\lambda^2,$$

and by using (5) we deduce that $f_{\lambda} \in S^*\left(\frac{1}{2}\right)$ for $|\lambda| \leq \frac{\sqrt{3}}{2}$.

References

- S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex plane, J. of Math. Anal. Appl. 65, 2(1978), 289-305.
- S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(1981), 157-171.
- [3] S. S. Miller, P. T. Mocanu, The theory and applications of second-order differential subordinations, Studia, Univ., Babeş-Bolyai, Mathematica, 34, 4(1989), 3-33.
- [4] P. T. Mocanu, Gh. Oros, Sufficent conditions for starlikeness I, (preprint).
- [5] M. Nunokawa, S. Owa, S. K. Lee, M. Obradović, Suficient conditions for starlikeness, Chinese J. Math. 24(3), 1996, 256-271.

- [6] M. Obradović, S. B. Joshi and I. Iovanović, On certain sufficient conditions for starlikeness and convexity (preprint).
- [7] Ch. Pommerenke, Univalent Function, Vandenhoeck Ruprecht in Göttingen, 1975.
- [8] C. Ramesha, S. Kumar, K. S. Padamanabham, A Sufficient condition for starlikeness, Chinese J. Math. 23(1995) no.2, 167-171.

BABES-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, 3400 CLUJ-NAPOCA, ROMANIA

UNIVERSITY OF ORADEA, DEPARTAMENT OF MATHEMATICS, 3700 ORADEA, ROMANIA