INVARIANT SETS IN MENGER SPACES

J.KOLUMBÁN AND A.SOÓS

Abstract. The purpose of the paper is to extend some results regarding the self-similar sets from the case of the ordinary metric spaces to the case of probabilistic metric spaces, introduced by K. Menger.

1. Introduction

In recent years the interest for sets having non-integer Hausdorff dimension is growing. There were named fractals by Mandelbrot. The most known fractals are invariant sets with respect to a system of contraction maps, especially the so called self-similar sets. In a famous work, Hutchinson [4] first studied the invariant sets systematically in a general framework. He proved among others the following: Let X be a complete metric space and $f_1, \ldots, f_m : X \to X$ be contraction maps. Then there exists a unique compact set $K \subseteq X$ such that $K = \bigcup_{i=1}^m f_i(K)$. If the maps f_i are similitudes, this invariant set K is said to be self-similar.

Our aim in this work is to generalize the above result for probabilistic metric spaces introduced in 1942 by K. Menger [5] who generalized the theory of metric spaces, to the development of which he already brought a major contribution. He proposed to replace the distance d(x,y) by a distribution function $F_{x,y}$ whose value $F_{x,y}(t)$, for any real number t, is interpreted as the probability that the distance between x and y is less than t. The theory of probabilistic metric spaces was developed by numerous authors, as it can be realized upon consulting the list of references in [2], as well as those in [8].

The study of contraction mappings for probability metric spaces was initiated by V.M.Sehgal [10],[11], H.Sherwood [13],[14], and A.T.Bharucha-Reid [1], [12]. For more recently papers dealing with generalizations and applications one can consult [2] and [6].

In section 2 we shall recall some fundamental notions from the theory of probabilistic metric spaces and prove some new results on the probabilistic Hausdorff-Pompeiu metric (Propositions 2.4 and 2.5). In section 3 we prove our main result (Theorem 3.1).

¹⁹⁹¹ Mathematics Subject Classification. 60A10, 28A78, 28A80.

2. Preliminaries

Let **R** denote the set of real numbers and $\mathbf{R}_+ := \{x \in \mathbf{R} : x \ge 0\}$. A mapping $F : \mathbf{R} \to [0, 1]$ is called a *distribution function* if it is non-decreasing, left continuous with $\inf F = 0$. By Δ we shall denote the set of all distribution functions F. We set $\Delta^+ := \{F \in \Delta : F(0) = 0\}$.

For a mapping $\mathcal{F}: X \times X \to \Delta^+$ and $x, y \in X$ we shall denote $\mathcal{F}(x, y)$ by $F_{x,y}$, and the value of $F_{x,y}$ at $t \in \mathbb{R}$ by $F_{x,y}(t)$, respectively. The ordered pair (X, \mathcal{F}) is a *probabilistic metric space* if X is a nonempty set and $\mathcal{F}: X \times X \to \Delta^+$ is a mapping satisfying the following conditions:

- 1) $F_{x,y}(t) = F_{y,x}(t)$ for all $x, y \in X$ and $t \in \mathbf{R}$;
- 2) $F_{x,y}(t) = 1$, for every t > 0, if and only if x = y;
- 3) if $F_{x,y}(s) = 1$ and $F_{y,z}(t) = 1$ then $F_{x,z}(s+t) = 1$.

A mapping $T : [0,1] \times [0,1] \rightarrow [0,1]$ is called a *t*-norm if the following conditions are satisfied:

A Menger space is a triplet (X, \mathcal{F}, T) , where (X, \mathcal{F}) is a probabilistic metric space, T is a t-norm, and

8)
$$F_{x,y}(s+t) \ge T(F_{x,z}(s), F_{z,y}(t))$$
 for all $x, y, z \in X$ and $s, t \in \mathbb{R}_+$.

The (t, ϵ) -topology in a Menger space was introduced in 1960 by B. Schweizer and A. Sklar [7]. The base for the neighbourhoods of an element $x \in X$ is given by

$$\{U_x(t,\epsilon) \subseteq X : t > 0, \epsilon \in]0,1[\},\$$

where

$$U_x(t,\epsilon) := \{ y \in X : F_{x,y}(t) > 1 - \epsilon \}.$$

If t-norm T satisfies the condition

$$sup\{T(t,t): t \in [0,1[\}=1,$$

then the (t, ϵ) -topology is metrizable (see [9]).

In 1966, V.M. Sehgal [10] introduced the notion of a contraction mapping in probabilistic metric spaces. The mapping $f: X \to X$ is said to be a *contraction* if there exists a $r \in]0, 1[$ such that

$$F_{f(x),f(y)}(rt) \ge F_{x,y}(t)$$

for every $x, y \in X$ and $t \in \mathbf{R}_+$.

For example, if (X, d) is a metric space and $G \in \Delta^+$, $G \not\models H$, in [7] one defines

$$F_{x,y}(t) = G(rac{t}{d(x,y)}) \quad if \ x \not\models y,$$

and

$$F_{x,y}(t) = H(t) \quad if \ x = y,$$

where the distribution function H is defined by H(t) = 1 if t > 0, and H(t) = 0 if $t \le 0$. If $f: X \to X$ is a contraction with ratio r, then it is a contraction in Sehgal sence with the same ratio. Indeed, we have

$$\begin{split} F_{f(x),f(y)}(rt) &= G(\frac{rt}{d(f(x),f(y))}) \geq G(\frac{rt}{rd(x,y)}) \text{ if } f(x) \not\models f(y) \text{ and } x \not\models y, \\ F_{f(x),f(y)}(rt) &= G(\frac{rt}{rd(x,y)}) \geq H(t) \text{ if } x \not\models y \text{ and } f(x) = f(y), \\ F_{f(x),f(y)}(rt) &= H(t) = F_{x,y}(t) \text{ if } x = y. \end{split}$$

A sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be fundamental if

$$\lim_{n,m\to\infty}F_{x_m,x_n}(t)=1$$

for all t > 0. The element $x \in X$ is called *limit* of the sequence, and we write $\lim_{n\to\infty} x_n = x$ or $x_n \to x$, if $\lim_{n\to\infty} F_{x,x_n}(t) = 1$ for all t > 0. A probabilistic metric (Menger) space is said to be *complete* if every fundamental sequence in that space is convergent. If (X,d) is a metric space, then the metric d induces a mapping $\mathcal{F} : X \times X \to \Delta^+$, where $\mathcal{F}(x,y) = F_{x,y}$ is defined by

$$F_{x,y}(t) = H(t - d(x,y)), t \in \mathbf{R}$$

Moreover (X, \mathcal{F}, Min) is a Menger space. It is complete if the metric d is complete (see [12]). The space (X, \mathcal{F}, Min) thus obtained is called the *induced Menger space*.

Proposition 2.1. (V.M. Sehgal [10], see also [2]) Every contraction mapping $f: X \to X$ on a complete Menger space (X, \mathcal{F}, Min) has a unique fixed point x_0 . Moreover, $f^n(x) \to x_0$ for each $x \in X$.

Let (X, \mathcal{F}, T) be a Menger space with T continuous and let A be a nonempty subset of X. The function $D_A : \mathbf{R} \to [0, 1]$ defined by

$$D_A(t) := \sup_{s < t} \inf_{x,y \in A} F_{x,y}(s)$$

is called the probabilistic diameter of A. It is a distribution function from Δ^+ . The set $A \subseteq X$ is probabilistic bounded if $\sup_{t>0} D_A(t) = 1$. If B and C are two subsets of X with $B \cap C \neq \emptyset$, then

$$D_{B\cup C}(s+t) \ge T(D_B(s), D_C(t)); \ s, t \in \mathbf{R}$$

$$\tag{1}$$

(see [3, Theorem 10]).

 \mathbf{Set}

$$\mathcal{D}^+ = \{F \in \Delta^+ : \sup_{t \in R} F(t) = 1\}.$$

In the following we suppose that (X, \mathcal{F}, T) is a Menger space with $\mathcal{F} : X \times X \to \mathcal{D}^+$ and T is continuous. In this case every set with two elements is probabilistic bounded.

Proposition 2.2. If A is a probabilistic bounded set in (X, \mathcal{F}, T) and $b \in X$, then the set $A_1 = A \cup \{b\}$ is also bounded.

Proof. Let $a \in A$. Then $A_1 = A \cup \{a, b\}$, hence by (1)

$$D_{A_1}(2t) \ge T(D_A(t), F_{a,b}(t))$$

Since $\sup_{t \in R} D_A(t) = 1$ and $\sup_{t \in R} F_{a,b}(t) = 1$, we have $\sup_{t \in R} D_{A_1}(2t) = 1$.

Corollary 2.1. Every finit set in (X, \mathcal{F}, T) is probabilistic bounded.

Corollary 2.2. If A and B are probabilistic bounded sets in (X, \mathcal{F}, T) , then $A \cup B$ is also probabilistic bounded.

An example for probabilistic unbounded set is the following. Let $\mathcal{F} : \mathbf{R} \times \mathbf{R} \to D^+$ be defined by $F_{x,y}(t) = H(t - |x - y|)$. Let N be the set of all natural numbers. Then $D_N(t) = 0$ for every t, hence N is probabilistic unbounded.

In a probabilistic metric space (X, \mathcal{F}) , the set A is said to be precompact if for every t > 0 and $\epsilon \in]0, 1[$ there exists a finite cover $\{C_i\}_{i \in I}$ of A such that $D_{C_i}(t) > 1 - \epsilon$ for all $i \in I$. A precompact set A is totally bounded, i.e. for every t > 0 and $\epsilon \in]0, 1[$ there exists a finite subset $B \subseteq A$ such that, for each $x \in A$, there is an $y \in B$ with $F_{x,y}(t) > 1 - \epsilon$ (see [2, Proposition 1.2.3.]). In a Menger space with a t-norm T such that $\sup_{a < 1} T(a, a) = 1$ the converse assertion also holds: a set A is precompact if and only if it is totally bounded (see [2, Theorem 1.2.1.]).

Let A and B nonempty subsets of X. The probabilistic Hausdorff-Pompeiu distance between A and B is the function $F_{A,B}: \mathbb{R} \to [0,1]$ defined by

$$F_{A,B}(t) := \sup_{s < t} T(\inf_{x \in A} \sup_{y \in B} F_{x,y}(s), \inf_{y \in B} \sup_{x \in A} F_{x,y}(s)).$$

Proposition 2.3. If C is a nonempty collection of nonempty closed bounded sets in (X, \mathcal{F}, T) , then (C, \mathcal{F}_C, T) is also a Menger space, where \mathcal{F}_C is defined by $\mathcal{F}_C(A, B) := F_{A,B}$ for all $A, B \in C$.

Proof. We have, for all $A, B \in C$,

$$F_{A,B}(x) \geq \sup_{t < x} T(\inf_{p \in A} \inf_{q \in B} F_{p,q}(t), \inf_{q \in B} \inf_{p \in A} F_{p,q}(t)) \geq$$
$$\geq T(D_{A \cup B}(t), D_{A \cup B}(t)).$$

Since by Corollary 2.2, the set $A \cup B$ is probabilistic bounded, it follows $\sup_{x \in \mathbb{R}} F_{A,B}(x) =$ 1. Therefore, by [3, Theorem 18] $(\mathcal{C}, \mathcal{F}_{\mathcal{C}}, T)$ is a Menger space.

In the following we suppose that T = Min.

Proposition 2.4. If (X, \mathcal{F}, Min) is a complete Menger space and C is the collection of all nonempty closed bounded subsets of X in (t, ϵ) - topology, then (C, \mathcal{F}_C, Min) is also a complete Menger space.

Proof. Let $(A_n)_{n \in \mathbb{N}}$ be a fundamental sequence in \mathcal{C} and let

$$A = \{x \in X : \forall n \in \mathbb{N}, \exists x_n \in A_n, \forall t > 0, \lim_{n \to \infty} F_{x_n, x}(t) = 1\}.$$
 (2)

Let \overline{A} denote the closure of A. By [3, Theorem 15] we have $F_{A_n,A} = F_{A_n,\overline{A}}$, so we must show that (i) $\lim_{n\to\infty} F_{A_n,A}(t) = 1$, for all t > 0, and (ii) $\overline{A} \in \mathcal{C}$.

(i) Let $\epsilon > 0$ and t > 0 be given. Then there exists $n_{\epsilon}(t) \in \mathbb{N}$ so that $n, m \ge n_{\epsilon}(t)$ implies $F_{A_n,A_m}(\frac{t}{2}) > 1 - \epsilon$. Let $n > n_{\epsilon}(t)$. We claim that $F_{A_n,A}(t) \ge 1 - \epsilon$.

If $x \in A$ then there is a sequence $(x_k)_{k \in \mathbb{N}}$ with $x_k \in A_k$ and $\lim_{k \to \infty} F_{x_k,x}(\frac{t}{2}) = 1$. So, for large enough $k \ge n_{\epsilon}(t)$, we have $F_{x_k,x}(\frac{t}{2}) > 1 - \epsilon$. Thus, since $F_{A_n,A_k}(\frac{t}{2}) > 1 - \epsilon$, for $n \ge n_{\epsilon}(t)$, there exist $y \in A_n$ and $z \in A_k$ such that

$$Min(F_{x_k,y}(\frac{t}{2}),F_{z,y}(\frac{t}{2}))>1-\epsilon,$$

hence $F_{x_k,y}(\frac{t}{2}) > 1 - \epsilon$. By 8) we have $F_{x,y}(t) > 1 - \epsilon$, hence

$$\sup_{s < t} \inf_{x \in A} \sup_{y \in A_n} F_{x,y}(s) > 1 - \epsilon.$$
(3)

Now suppose $y \in A_n$. Choose integers $k_1 < k_2 < ... < k_i < ...$ so that $k_1 = n$ and

$$F_{A_k,A_{k_i}}(\frac{t}{2^{i+1}}) > 1 - \frac{\epsilon}{2^{i-1}},$$

for all $k > k_i$. Hence we can choose s < t such that $\inf_{z \in A_{k_i}} \sup_{x \in A_k} F_{x,z}(\frac{s}{2^{i+1}}) > 1 - \frac{\epsilon}{2^{i-1}}$. Then define a sequence (y_k) with $y_k \in A_k$ as follows: For k < n, choose $y_k \in A_k$ arbitrarily. Choose $y_n = y$. If y_{k_i} has been chosen, and $k_i < k \le k_{i+1}$, choose $y_k \in A_k$ with $F_{y_{k_i},y_k}(\frac{s}{2^{i+1}}) > 1 - \frac{\epsilon}{2^{i-1}}$. Then, for $k_i < k \le k_{i+1} < \ldots < k_j < l \le k_{j+1}$, we have

$$F_{y_{i},y_{k}}(\frac{s}{2^{i-1}}) \geq T(F_{y_{k},y_{k_{i}}}(\frac{s}{2^{i}}),T(F_{y_{k_{i}},y_{k_{i+1}}}(\frac{s}{2^{i+1}}),\ldots,$$
$$T(F_{y_{k_{j-1}},y_{k_{j}}}(\frac{s}{2^{j}}),F_{y_{k_{j}},y_{i}}(\frac{s}{2^{j}}))\ldots) > 1 - \frac{\epsilon}{2^{i-1}}.$$

Let r > 0, $\eta > 0$, and choose i so that $r > \frac{s}{2^{i-1}}$ and $\frac{\epsilon}{2^{i-1}} < \eta$. We have

$$F_{y_k,y_l}(r) \ge F_{y_k,y_l}(\frac{s}{2^{i-1}}) > 1 - \frac{\epsilon}{2^{i-1}} > 1 - \eta.$$

Hence (y_k) is a fundamental sequence, so it converges. Let x be its limit. Then $x \in A$ and we have

$$F_{x,y}(t) \ge T(F_{x,y_k}(\frac{t}{2}), F_{y_k,y}(\frac{t}{2})).$$

We choose k such that $F_{x,y_k}(\frac{t}{2}) > 1 - \epsilon$. Since $F_{y,y_k}(\frac{t}{2}) > 1 - \epsilon$, it follows $F_{x,y}(t) > 1 - \epsilon$. Therefore we have

$$\sup_{s < t} \inf_{y \in A_n} \sup_{x \in A} F_{x,y}(s) > 1 - \epsilon.$$
(4)

By (3) this shows that

$$F_{A_n,A}(t) = \sup_{s < t} T(\inf_{x \in A} \sup_{y \in A_n} F_{x,y}(s), \inf_{y \in A_n} \sup_{x \in A} F_{x,y}(s)) > 1 - \epsilon.$$

So $\lim_{n\to\infty} F_{A_n,A}(t) = 1$, for all t > 0.

(ii) Taking $\epsilon = 1$ in the last argument, we have proved that A is nonempty.

We have to show that A is bounded. Since $\lim_{n\to\infty} F_{A_n,A}(t) = 1$, for all $\epsilon > 0$ and $t_0 > 0$ we have $\inf_{x \in A} \sup_{w \in A_n} F_{x,w}(t_0) > 1 - \epsilon$ and $\inf_{y \in A_n} \sup_{x \in A} F_{x,y}(t_0) > 1 - \epsilon$. A_n being probabilistic bounded, for all $\epsilon > 0$ there is $t_{\epsilon} > t_0$ such that $\inf_{u,v \in A_n} F_{u,v}(t_{\epsilon}) > 1 - \epsilon$.

For $x, y \in A$ there exist $u, v \in A_n$ such that

$$F_{x,u}(t_0) > 1 - \epsilon, \ F_{y,v}(t_0) > 1 - \epsilon.$$

We have

$$F_{x,y}(3t_{\epsilon}) \ge T(F_{x,u}(t_{\epsilon}), F_{u,y}(2t_{\epsilon})) \ge T(F_{x,u}(t_{0}), T(F_{u,v}(t_{\epsilon}), F_{v,y}(t_{0}))) > 1 - \epsilon.$$

So $D_A(3t_{\epsilon}) \geq 1 - \epsilon$, consequently $\sup_{t \in \mathbf{R}} D_A(t) = 1$. By [3] it follows that $D_A = D_{\overline{A}}$. Since A is bounded, \overline{A} is also bounded and closed, so $\overline{A} \in \mathcal{C}$.

Proposition 2.5. Let \mathcal{K} be the collection of all nonempty compact sets in the complete Menger space (X, \mathcal{F}, Min) and let \mathcal{C} be the collection of all nonempty closed bounded subsets of X in (t, ϵ) - topology. Then $(\mathcal{K}, \mathcal{F}_{\mathcal{K}}, Min)$ is a closed subspace of $(\mathcal{C}, \mathcal{F}_{\mathcal{C}}, Min)$.

Proof. First we show that $\mathcal{K} \subseteq \mathcal{C}$. For this we have to show that any nonempty compact set A is probabilistic bounded. Let $\epsilon \in]0, 1[$. For every t > 0, there exists a finite cover $\{C_i\}_{i \in I}$ of A such that $D_{C_i}(t) > 1 - \epsilon$ for all $i \in I$. Let $I = \{1, ..., m\}$ and set $C = \bigcup_{i=1}^m C_i$.

For every $i \in \{1, \dots, m\}$ choose an element $c_i \in C_i$ and set $B = \{c_1, \dots, c_m\}$. Then, for $C_i^* = C_i \cup B$, we have $C = \bigcup_{i=1}^m C_i^*$. Let s > 0 such that $D_B(s) > 1 - \epsilon$. By (1) we have

$$\begin{array}{lcl} D_A(m(t+s)) & \geq & D_C(m(t+s)) \geq \\ \\ & \geq & T(D_{C_1^{\bullet}}(t+s), T(D_{C_2^{\bullet}}(t+s), ..., T(D_{C_{m-1}^{\bullet}}(t+s), D_{C_m^{\bullet}}(t+s))...) \\ \\ & \geq & T(D_{C_1}(t), T(D_{C_2}(t), \cdots, T(D_{C_{m-1}}(t), T(D_{C_m}(t), D_B(s))...) > 1 - \epsilon_s \end{array}$$

hence A is probabilistic bounded.

Let $(A_n)_{n \in \mathbb{N}}$ be a sequence in \mathcal{K} converging to $A \in \mathcal{C}$. We shall show that A is totally bounded. Let $\epsilon > 0$, t > 0, and choose n so that $F_{A_n,A}(\frac{t}{3}) > 1 - \epsilon$. The set A_n being precompact in the (t, ϵ) -topology, there exist $x_1, ..., x_m \in A_n$ such that

$$A_n \subseteq \bigcup_{i=1}^m U_{x_i}(\frac{t}{3},\epsilon).$$

For each x_i there is $y_i \in A$ with $F_{x_i,y_i}(\frac{t}{3}) > 1 - \epsilon$. For $y \in A$ there exists $x \in A_n$ with $F_{x,y}(\frac{t}{3}) > 1 - \epsilon$. Let $i \in \{1, ..., m\}$ such that $x \in U_{x_i}(t, \epsilon)$. Then

$$F_{y,y_i}(t) \ge T(F_{y,x}(\frac{t}{3}), T(F_{x,x_i}(\frac{t}{3}), F_{x_i,y_i}(\frac{t}{3})) > 1 - \epsilon,$$

hence

$$A\subseteq \bigcup_{i=1}^m U_{y_i}(t,\epsilon).$$

Therefore A is totally bounded. The (t, ϵ) -topology being metrizable and A being closed, it is compact.

Corollary 2.3. If (X, \mathcal{F}, Min) is a complete Menger space and \mathcal{K} is the collection of all nonempty compact subsets of X in (t, ϵ) – topology, then $(\mathcal{K}, \mathcal{F}_{\mathcal{K}}, Min)$ is also a complete Menger space.

3. Invariant sets

In this section we will generalize Hutchinson's theorem on invariant sets.

Proposition 3.1. Let (X, \mathcal{F}, Min) be a Menger space and C be the collection of all nonempty closed bounded sets in X. Let $f_1, ..., f_m : X \to X$ be contractions with ratios $r_1, ..., r_m \in]0, 1[$ and let $\phi : C \to C$ be defined by

$$\phi(E) := \bigcup_{i=1}^p f_i(E).$$

Then ϕ is a contraction.

Proof. Let $r = max\{r_i, 1 \le i \le m\}$ and $A, B \in C$. We shall show that

$$F_{\phi(A),\phi(B)}(rt) \ge F_{A,B}(t),\tag{5}$$

for all t > 0.

For all $A, B \in C$ and s < t, we have

$$F_{\bigcup_{i=1}^{m}f_{i}(A),\bigcup_{i=1}^{m}f_{i}(B)}(rt) \geq T(\inf_{u \in \bigcup_{i=1}^{m}f_{i}(A)} \sup_{v \in \bigcup_{i=1}^{m}f_{i}(B)} F_{u,v}(rs), \inf_{v \in \bigcup_{i=1}^{m}f_{i}(B)} \sup_{v \in \bigcup_{i=1}^{m}f_{i}(A)} F_{u,v}(rs))$$

Let i_0 and j_0 be such that

$$\inf_{u \in \bigcup_{i=1}^{m} f_{i}(A)} \sup_{v \in \bigcup_{i=1}^{m} f_{i}(B)} F_{u,v}(rs) = \inf_{u \in f_{i_{0}}(A)} \sup_{v \in \bigcup_{i=1}^{m} f_{i}(B)} F_{u,v}(rs) \ge \inf_{u \in f_{i_{0}}(A)} \sup_{v \in f_{i_{0}}(B)} F_{u,v}(rs),$$

$$\inf_{v \in \bigcup_{i=1}^{m} f_{i}(B)} \sup_{u \in \bigcup_{i=1}^{m} f_{i}(A)} F_{u,v}(rs) = \inf_{y \in f_{j_{0}}(B)} \sup_{u \in \bigcup_{i=1}^{m} f_{i}(A)} F_{u,v}(rs) \ge \inf_{v \in f_{j_{0}}(B)} \sup_{u \in f_{j_{0}}(A)} F_{u,v}(rs).$$
Hence

$$\begin{split} F_{\cup_{i=1}^{m}f_{i}(A),\cup_{i=1}^{m}f_{i}(B)}(rt) &\geq T(\inf_{u\in f_{i_{0}}(A)}\sup_{v\in f_{i_{0}}(B)}F_{u,v}(rs),\inf_{v\in f_{j_{0}}(B)}\sup_{u\in f_{j_{0}}(A)}F_{u,v}(rs)) \\ &\geq T(\inf_{u\in f_{i_{0}}(A)}\sup_{v\in f_{i_{0}}(B)}F_{u,v}(rs),\inf_{v\in f_{i_{0}}(B)}\sup_{u\in f_{i_{0}}(A)}F_{u,v}(rs)) = \\ &= T(\inf_{x\in A}\sup_{y\in B}F_{f_{i_{0}}(x),f_{i_{0}}(y)}(rs),\inf_{y\in B}\sup_{x\in A}F_{f_{i_{0}}(x),f_{i_{0}}(y)}(rs)) \geq \\ &\geq T(\inf_{x\in A}\sup_{y\in B}F_{x,y}(s),\inf_{y\in B}\sup_{x\in A}F_{x,y}(s)), \end{split}$$

where $l_0 = i_0$ if $\inf_{u \in f_{i_0}(A)} \sup_{v \in f_{i_0}(B)} F_{u,v}(rs) \leq \inf_{v \in f_{j_0}(B)} \sup_{u \in f_{j_0}(A)} F_{u,v}(rs)$, and $l_0 = j_0$ else. Therefore we have (5).

Theorem 3.1. Let (X, \mathcal{F}, Min) be a complete Menger space and let $f_1, ..., f_m : X \to X$ be contractions with ratios $r_1, ..., r_m \in]0, 1[$, respectively. Then there exists a nonempty compact subset K of X such that

$$f_1(K) \cup \ldots \cup f_m(K) = K$$

Moreover, the set K with this property is unique in the space of all nonempty closed bounded sets in X.

Proof. By Proposition 3.1 the function $\phi : \mathcal{C} \to \mathcal{C}$ defined by

$$\phi(E) = \bigcup_{i=1}^p f_i(E)$$

is a contraction, and by Proposition 2.4 $(\mathcal{C}, \mathcal{F}_{\mathcal{C}}, Min)$ is a complete Menger space. Then, by Proposition 2.1. there is a unique set K in \mathcal{C} such that $\phi(K) = K$. Moreover, we have $\lim_{n \to +\infty} \phi^n(K_0) = K$ for any $K_0 \in \mathcal{K}$. Thus, by Proposition 2.5 the set K must be in \mathcal{K} .

Corollary 3.1. (Hutchinson [4]) Let (X,d) be a complete metric space and f_1, \ldots, f_m : $X \to X$ be contraction maps with ratios r_1, \ldots, r_m , respectively. Then there exists a unique nonempty compact set $K \subseteq X$ such that $K = \bigcup_{i=1}^m f_i(K)$.

Proof. Let (X, \mathcal{F}, Min) be the induced Menger space by the metric d. Since, for each t > 0 and $i \in \{1, ..., m\}$,

$$F_{f_i(x),f_i(y)}(r_it) = H(r_it - d(f_i(x), f_i(y))) \ge H(r_it - r_id(x, y)) = H(t - d(x, y)) = F_{x,y}(t),$$

the conclusion follows from Theorem 3.1.

References

- A.T. Bharucha-Reid: Fixed point Theorems in Probabilistic Analysis, Bull. Amer. Math. Soc.,82 (1976), 641-657.
- [2] Gh. Constantin, I. Istratescu: Elements of Probabilistic Analysis, Kluwer Academic Publishers, 1989.
- [3] R.Egbert: Product and Quotients of Probabilistic Metric Spaces, Pacific Journal of Mathematics, 24 (1968), no.3, 437-455.
- [4] J.E.Hutchinson: Fractals and Self Similarity, Indiana University Mathematics Journal, 30 (1981), no.5, 713-747.
- [5] K.Menger: Statistical Metrics, Proc.Nat. Acad. of Sci., U.S.A. 28 (1942), 535-537.
- [6] E.Pap, O.Hadzić, R.Meciar: A Fixed Point Theorem in Probabilistic Metric Spaces and Application, Journal of Mathematical Analysis and Application, 202 (1996), 433-449.
- [7] B.Schweizer, A.Sklar: Statistical Mertic Spaces, Pacific Journal of Mathematics, 10 (1960), no. 1, 313-334.
- [8] B.Schweizer, A.Sklar: Probabilistic Mertic Spaces, North Holland, New-York, Amsterdam, Oxford, 1983.
- [9] B.Schweizer, A.Sklar, E.Thorp: The Metrization of Statistical Metric Spaces, Pacific Journal of Mathematics, 10 (1960), no. 2, 673-675.
- [10] V.M.Sehgal: Some Fixed Point Theorems in Functional Analysis and Probability, Ph.D.Thesis, Wayne State University, 1966.
- [11] V.M.Sehgal: A Fixed Point Theorem for Mappings with a Contractive Iterate, Proc. Amer. Math. Soc., 23 (1969), 631-634.
- [12] V.M.Sehgal, A.T. Bharucha-Reid: Fixed Points of Contraction Mappings on Probabilistic Metric Spaces, Math. Systems Theory, 6 (1972), 92-102.
- [13] H. Sherwood: Complete Probabilistic Metric Spaces and Random Variables Generated Spaces, Ph.D.Thesis, Univ. of Arizona, 1965.
- [14] H. Sherwood: Complete Probabilistic Metric Spaces, Z.Wahrsch.verw. Geb., 20 (1971), 117-128.

MATHEMATICS AND COMPUTER SCIENCE FACULTY, "BABES-BOLYAI" UNIVERSITY CLUJ-NAPOCA, ROMANIA