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INVARIANT SETS IN MENGER SPACES

J.KOLUMBAN AND A.SO0S

Abstract. The purpose of the paper is to extend some results regarding the
self-similar sets from the case of the ordinary metric spaces to the case of

probabilistic metric spaces, introduced by K. Menger.

1. Introduction

In recent years the interest for sets having non-integer Hausdorff dimension is
growing. There were named fractals by Mandelbrot. The most known fractals are invari-
ant sets with respect to a system of contraction maps, especially the so called self-similar
sets. In a famous work, Hutchinson [4] first studied the invariant sets systematically in
a general framework. He proved among others the following:Let X be a complete metric
space and fi,... ,fm : X = X be contraction maps. Then there exists a unique compact
set K C X such that K = %, fi(K). If the maps f; are similitudes, this invariant set
K is said to be self-similar.

Our aim in this work is to generalize the above result for probabilistic metric
spaces introduced in 1942 by K. Menger [5] who generalized the theory of metric spaces,
to the development of which he already brought a major contribution. He proposed to
replace the distance d(z,y) by a distribution function F; j, whose value F; ,(t), for any
real number ¢, is interpreted as the probability that the distance between z and y is less
than ¢. The theory of probabilistic metric spaces was developed by numerous authors,
as it can be realized upon consulting the list of references in [2], as well as those in [8].

The study of contraction mappings for probability metric spaces was initiated by
V.M.Sehgal [10],[11], H.Sherwood [13],[14], and A.T.Bharucha-Reid [1], [12]. For more
recently papers dealing with generalizations and applications one can consult [2] and [6].

In section 2 we shall recall some fundamental notions from the theory of proba-
bilistic metric spaces and prove some new results on the probabilistic Hausdorff-Pompeiu

metric (Propositions 2.4 and 2.5). In section 3 we prove our main result (Theorem 3.1).
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2. Preliminaries

Let R denote the set of real numbers and R, := {z € R: z > 0}. A mapping
F :R— [0,1] is called a distribution function if it is non-decreasing, left continuous
with inf FF = 0. By A we shall denote the set of all distribution functions F. We set
At :={F € A: F(0) = 0}.

For a mapping F : X x X = At and z,y € X we shall denote F(z,y) by F;y,
and the value of F; 4, at t € R by F; ,(t), respectively. The ordered pair (X,F) is a
probabilistic metric space if X is a nonempty set and F : X x X — A¥ is a mapping
satisfying the following conditions: )

1) Fpy(t) = Fy(t) forall z,y € X and t € R;

2) F;4(t) =1, for every t > 0, if and only if z = y;

3) if Fz 4(s) =1 and Fy ,(t) =1 then F; (s +1¢) =1.

A mapping T : [0, 1] x [0,1] — [0, 1] is called a t-norm if the following conditions
are satisfied:

4) T'(a,1) = a for every a € [0, 1];

5) T'(a,b) = T'(b,a) for every a,b € [0,1]

6) if @ > c and b > d then T(a,b) > T'(c,d);

7) T(a,T(b,c)) = T(T(a,b),c) for every a,b,c € [0,1].

We list here the simplest:

Ti(a,b) = maz{a +b— 1,0},

T2(a,b) = ab,

Ts(a,b) = Min(a,db) = min{a,b},

A Menger space is a triplet (X, F,T), where (X,F) is a probabilistic metric
space, T is a t-norm, and

8) Fry(s +t) > T(Fy,.(8), Fyy(t)) for all z,y,z € X and 8,2 € Ry.

The (¢, €)-topology in a Menger space was introduced in 1960 by B. Schweizer
and A. Sklar [7]. The base for the neighbourhoods of an element z € X is given by

{Uz(t,e) C X : > 0,€ €]0,1[},
where

Uz(t,e) ={y € X : F; 4(t) > 1—¢}.
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If t-norm T satisfies the condition
sup{T(¢,t): t€[0,1[} =1,

then the (t,€) -topology is metrizable (see [9]).

In 1966, V.M. Sehgal [10] introduced the notion of a contraction mapping in
probabilistic metric spaces. The mapping f : X — X is said to be a contraction if there
exists a r €]0, 1] such that

Fi(z).f(v) (rt) > Fa,y(t)
for every z,y € X and t € R;.
For example, if (X, d) is a metric space and G € At, G /£H, in [7] one defines
t .
F-‘B.ll(t) - G(d(z, y)) ’lf T /‘{:y7
and
Fry(t)=H() ifz=y,

where the distribution function H is defined by H(t) =1if¢ > 0, and H(t) =0if ¢t < 0.
If f: X — X is a contraction with ratio r, then it is a contraction in Sehgal sence with

the same ratio. Indeed, we have

Fyta10(rt) = G g7y f(y))) > Glrgi) if 1(®) A1) and s Ay,

Ft(a), 1) (rt) = G(5—=) 2 H(t) if = fy and f(z) = f(y),

d( z,y)
Fi(a).p()(rt) = H(t) = Foy(8) if z=y.
A sequence (Tp)nen in X is said to be fundamental if

hm E z.(t)=1

n,Mm—00
for all £ > 0. The element z € X is called limst of the sequence, and we write lim,_yo0 Zn =
T Or T, = z, if limy 00 Fy 2, (t) = 1 for all ¢ > 0. A probabilistic metric (Menger) space
is said to be complete if every fundamental sequence in that space is convergent. If

(X,d) is a metric space, then the metric d induces a mapping F : X x X — A*, where
F(z,y) = Fy,y is defined by

Fpy(t) = H(t - d(z,y)), t € R.
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Moreover (X, F, Min) is a Menger space. It is complete if the metric d is complete (see
(12]). The space (X, F, Min) thus obtained is called the induced Menger space.

Proposition 2.1. (V.M. Sehgal [10], see also [2] ) Every contraction mapping f : X —
X on a complete Menger space (X,F,Min) has a unique fized point zo. Moreover,
f™(z) = zo for each z € X.

Let (X,F,T) be a Menger space with T' continuous and let A be a nonempty
subset of X. The function D4 : R — [0,1] defined by

Da(t) = sup 0f Fay(s)

is called the probabilistic diameter of A. It is a distribution function from A+. The set
A C X is probabilistic bounded if sup,,oDa(t) = 1. If B and C are two subsets of X
with BN C # @, then

Dpuc(s +1t) > T(Dp(s), De(t)); s,t € R 1)

(see [3, Theorem 10]).
Set

Dt ={F € At :sup F(t) = 1}.
teR

In the following we suppose that (X, F,T) is a Menger space wifh F:XxX —Dtand

T is continuous. In this case every set with two elements is probabilistic bounded.

Proposition 2.2. If A is a probabilistic bounded set in (X, F,T) and b € X, then the
set Ay = AU {b} i3 also bounded.

Proof. Let a € A. Then A; = AU {a, b},hence by (1)

D, (2t) 2 T(Da(t), Fap(t))-
Since sup,c g D4(t) = 1 and supyc g Fo5(t) = 1, we have sup,c g D4, (2t) = 1. O
Corollary 2.1. Every finit set in (X, F,T) is probabilistic bounded.

Corollary 2.2. If A and B are probabilistic bounded sets in (X, F,T), then AU B is
also probabilistic bounded.
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An example for probabilistic unbounded set is the following. Let F : RxR —»D*
be defined by F ,(t) = H(t — |z — y|) . Let N be the set of all natural numbers. Then
Dy (t) = 0 for every t, hence N is probabilistic unbounded.

In a probabilistic metric space (X,F), the set A is said to be precompact if for
every t > 0 and € €]0, 1] there exists a finite cover {C;}ics of A such that D¢, () > 1—e¢
for all i € I. A precompact set A is totally bounded, i.e. for every t > 0 and € €]0,1]
there exists a finite subset B C A such that, for each z € A, there is an y € B with
F; 4(t) > 1—€ (see [2, Proposition 1.2.3.]). In a Menger space with a t-norm T such that
sup,«; T'(a,a) = 1 the converse assertion also holds: a set A is precompact if and only
if it is totally bounded (see [2, Theorem 1.2.1.]).

Let A and B nonempty subsets of X. The probabilistic Hausdorff-Pompetu dis-
tance between A and B is the function F4 g : R — [0, 1] defined by

F4 p(t) :=supT'(inf sup F; ,(s), inf sup F; ,(3)).
a,B(1) o<It) (zGAyeg z,y(8) yeBzeg )

Proposition 2.3. If C is a nonempty collection of nonempty closed bounded sets in
(X,F,T), then (C,F¢,T) is also a Menger space, where Fc¢ is defined by F¢(A, B) :=
Fap foral A,BeC.

Proof. We have, for all A,B€C,

e e S
Fa,p(z) 2 sup T(inf inf Fpq(t), inf inf F(t)) 2

> T'(Daus(t), Daus(t))-

Since by Corollary 2.2, the set AUB is probabilistic bounded, it follows sup,cr F4,8(z) =
1. Therefore, by [3, Theorem 18] (C, F¢,T) is a Menger space. d

In the following we suppose that T' = Min.

Proposition 2.4. If (X,F, Min) is a complete Menger space and C is the collection of
all nonempty closed bounded subsets of X in (t,€)— topology, then (C, F¢,Min) is also a

complete Menger space.
Proof. Let (A;)nen be a fundamental sequence in C and let
A={z€X:¥YneN,3z, eAn,Vt>0,'}Lr2°F,",a(t) =1} (2)
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Let A denote the closure of A. By [3, Theorem 15] we have Fa, 4 = F, %, so we must
show that (i) limp_c0 Fa. a(t) =1, for all ¢ > 0, and (ii) 4 € C.

(i) Let € > 0 and ¢t > 0 be given. Then there exists n.(t) AE N so that n,m > n.(t)
implies Fu,,4,,(%) > 1 —¢€. Let n > n(t). We claim that Fa, a(t) >1—e.

I z € A then there is a sequence (zx)ren With zx € Ay and limg_yo0 Fi, (%) =
1. So, for large enough k > n.(t), we have F,,,,w(%) > 1—e. Thus, since FAn,Ak(%) > 1—¢,
for n > ne(t), there exist y € A, and z € 4;, such that

. t t
M‘"(sz.y(g), Fz,y(§)) >1-g,
hence Fy, (%) > 1 —e. By 8) we have F; ;(t) > 1 — ¢, hence

9;12) :rex’i; sup Fry(s)>1-e (3)

Now suppose y € A,. Choose integers k; < kg < ... < k; < ... so that k; = n and

t €
Fara (51) > 1= 501

for all k > k;. Hence we can choose s < ¢ such that inf,¢a,, 8up,e 4, Fz,2(5%r) > 1— 5T,
Then define a sequence (yx) with yx € A as follows: For k < n, choose yx € A
arbitrarily. Choose y, = y. If yx, has been chosen, and k; < k < ki41,.choose yx € A;
with Fy, 4, (5%r) > 1 — 55r. Then, for k; <k < kit < ... <kj <1< kjq1, we have

8 S 8
F’.'/l .yk(z,'__f) 2 T(Fm.yu,- ('2‘;)’ T(Fyk,- sYhiga (‘2",_,.—1)a seey

38 S €
T(Fyki_l .w.j (?)7Fykj ,y;(g))...) > l - 2'.—_1.
Letr>0,17>0,andchoo§eisothatr> st and 5=y < 7. We have
8 €
Fﬂk'lll(r) 2 Fyg,m(éi—:) >1- F >1 -n.

Hence (yx) is a fundamental sequence, so it converges. Let = be its limit. Then z € A

and we have

Fay®) 2 T(Fen (5 Funa (3)

We choose k such that Fy 4, (£) > 1—e. Since Fyy, (£) > 1—g¢, it follows Fy,,(t) > 1-e.

Therefore we have

sup inf sup F; ,(3) > 1—e. 4
3<It>1/€Aﬂ zep 2(8) @
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By (3) this shows that
F. t) =supT(inf sup F; , inf sup F, 1—-e
Ana(t) Ss<1t) (;EAVSE/?,. =(2) vleA- :eg za(8) > ¢

So limp,_y00 Fa,,4(t) =1, for all ¢t > 0.

(ii) Taking € = 1 in the last argument, we have proved that A is nonempty.

We have to show that A is bounded. Since limp o0 Fa,,4(t) = 1,foralle > 0and
to > 0 we have infyc 4 Supy,c o, Fz,w(to) > 1 —e€and infyca, sup,cp Fz y(to) > 1—€ Ay
being probabilistic bounded, for all € > 0 there is . > to such that inf, ,ea, Fyo(te) >
l—e

For z,y € A there exist u,v € A, such that
Fzu(to) >1—¢€, Fyu(to) >1—¢.
We have
Fry(3te) 2 T(Frulte), Fuy(2te)) 2 T(Fz,u(to), T(Fup(te), Fo,y(t0))) > 1 -

So D4(3t) > 1 — ¢, consequently sup;cg Da(t) = 1. By [3] it follows that Dg = D4.
Since A is bounded, A is also bounded and closed, so 4 € C. O

Proposition 2.5. Let K be the collection of all nonempty compact sets in the complete
Menger space (X,F,Min) and let C be the collection of all nonempty closed bounded
subsets of X in (t,e)— topology. Then (K, Fx, Min) is a closed subspace of (C, F¢,Min).

Proof. First we show that K C C. For this we have to show that any nonempty compact
set A is probabilistic bounded. Let € €]0,1[. For every ¢ > 0, there exists a finite cover
{Ci}ier of A suchthat D¢, (t) > 1—eforalli € I. Let I = {1,...,m} and set C = U2, C;.

For every i € {1,--- ,m} choose an element ¢; € C; and set B = {¢;,--- ,cm}
Then, for C} = C; U B, we have C = U,C;. Let s > 0 such that Dp(s) > 1 —e¢. By

(1) we have

Da(m(t+3s)) > De(m(t+s))>
> T(Dc;(t+s),T(Dcy(t+s),...,T(Dcs,_, (t + 8), Dcs, (¢ + 8)).-.)
2 T(Dc,(t),T(Dc,(t),- -+, T(De,,, (), T(Dc,. (), Dp(8))---) > 1 =,
hence A is probabilistic bounded.
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Let (An)nen be a sequence in K converging to A € C. We shall show that A is
totally bounded. Let € > 0, ¢ > 0, and choose n so that Fa,,4(%) > 1 — ¢. The set A,
being precompact in the (¢, €) -topology, there exist 21, ...z, € A, such that
" t
An g U Uz;(g,e).

i=1
For each x; there is y; € A with Fy, 5,(4) > 1 — €. For y € A there exists ¢ € A, with
F;y(£) >1—c Leti€ {1,..,m} such that z € Uy, (t,€). Then
i t t
Fy,m () > T(F, ,z(g)aT(Fx,za(ﬁ),Fd-'.'.v-'(‘é')) >1—c¢

hence

m
AcJUute).

i=1
Therefore A is totally bounded. The (¢, €)-topology being metrizable and A being closed,

it is compact. O

Corollary 2.3. If (X,F, Min) is a complete Menger space and K is the collection of all
nonempty compact subsets of X in (t,€)— topology, then (K, Fx,Min) is also a complete

Menger space.
3. Invariant sets

In this section we will generalize Hutchinson’s theorem on invariant sets.

Proposition 3.1. Let (X,F, Min) be a Menger space and C be the collection of all
nonempty closed bounded sets in X. Let f1,...,fm : X = X be contractions with ratios
T1,...Tm €]0,1[ and let ¢ : C = C be defined by

#(E) = UL, fi(E).
Then ¢ is a contraction.
Proof. Let r = maz{r;,1 <i <m} and A, B € C. We shall show that

Fy(a),4(8)(rt) 2 Fa,B(t), (5)

for all ¢t > 0.
Forall A,B € C and s < t, we have

Fum_timyum. gumy(rt) > T( inf F, inf Fyu(rs)).
U, £ () U, £1(B) (1E) 2 (ueu‘;: ) oo ® ) u.v(r")’ueu;ﬁ B 0ens % ) u,(r8))

i=17i
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Let 19 and jo be such that

inf su Fy(rs) = inf sup  Fy,o(rs) > inf sup Fyy(rs),
u€U, fi(A) ueug';f}.-(B) us(rs) u€fip(4) veur, £:(B) uv(r8) u€fig(4) ve fi4(B) we

inf su Fyo(rs) = inf su F,4(rs) > inf sup Fy(rs).
vEUL, fi(B) yeur ,I,)f.-(A) us(r8) V€ Lo (B) ueur II;; (A) w(rs) vE £io (B) ue fi4(A) e

Hence

Fm 4 m ¢py(rt) > T( inf F, , inf sup Fy,(rs
Uz £i(A)Ui ‘(B)( )2 (ue}g(A)veif(’B) uo(r8) ueg.l,(B)uefjole) wv(re))

>T( inf sup F,.(rs), inf sup Fy.(rs)) =
- (ueflo(A)vefxorzB) ol )vefxo(B)uefz.RA) o(rs))

= T(inf, 89D Fry 0).10 ) (2), 0 89 Fiy (2),110) (7)), 2

S 70 .
> T(inf, sup Fzy(9), inf sup Fz,y(8))s

where lo = io if infuey, (4)SUDyey; (B) Fuo(rs) < infycs (B) SUPuey;, (4) Fy,u(rs), and

lo = jo else. Therefore we have (5). O

Theorem 3.1. Let (X,F, Min) be a complete Menger space and let f1,....,fm : X =+ X
be contractions with ratios ry,...rm, €]0,1], respectively. Then there exists a nonemply

compact subset K of X such that
fi(K)U ..U f(K) =K.

Moreover, the set K with this property is unique in the space of all nonempty closed
bounded sets in X.

Proof. By Proposition 3.1 the function ¢ : C — C defined by
$(E) = UL, fi(E)

is a contraction, and by Proposition 2.4 (C, F¢,Min) is a complete Menger space. Then,
by Proposition 2.1. there is a unique set K in C such that ¢(K) = K. Moreover, we have
limp_y 400 " (Ko) = K for any Koy € K. Thus, by Proposition 2.5 the set K must be in
K. O

Corollary 3.1. (Hutchinson [4]) Let (X,d) be a complete metric space and f1,..., fm:
X — X be contraction maps with ratios 7y,... ,rm, respectively. Then there exists o
unique nonempty compact set K C X such that K = U2, fi(K)-
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Proof. Let (X, F, Min) be the induced Menger space by the metric d. Since, for each
t>0andice€{1,..,m},

Ff (), £:(v) (rit) = H(rit = d(fi(z), fi(¥))) > H(rit —rid(z,y)) = H(t — d(z,y)) = Fo 4 (t),
the conclusion follows from Theorem 3.1. O
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