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ON SOME 0-SCHUNCK CLASSES

RODICA COVACI

Abstract. In this paper, Ore’s generalized theorems given in [4] are used to
study some special o-Schunck classes. Thus we prove that: 1) the equivalence
of D, A and B properties (given in [7] and [3]) on a 0-Schunck class takes place;
2) the “composite” of two o-Schunck élasses with the D property is in turn a
o-Schunck class with the D property; 3) the class D of all o-Schunck classes
with the D property, ordered by inclusion, forms respect to the operations of

“composite” and intersection a complete lattice.

1. Preliminaries

All groups considered in the paper are finite. We denote by o an arbitrary set of

primes and by o' the complement to o in the set of all primes.

Definition 1.1. a) A class X of groups is a homomorph if X is closed under homomor-
phisms.
b) A group G is primitive if G has a stabilizer, i.e. a maximal subgroup W with

coregW = 1, where
coregW = 3{W9/gxG}.

¢) A homomorph X is a Schunck class if X is primitively closed, i.e. if any group G, all

of whose primitive factor groups are in X, is itself in X.

Definition 1.2. Let X be a class of groups, G a group and H a subgroup of G. We say
that:
a) H is an X-subgroup of G if HxX;
b) H is an X-mazimal subgroup of G if:
(1) HxX;
(2) from H[H*|G,H*xX follows H = H*.
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c) H is an X-covering subgroup of G if :
(1) HxX;
(2) HVIG, Vo & V,V/VoxX imply V = HV,.

Obviously we have:

Proposition 1.3. Let X be a homomorph, G a group and H a subgroup of G. If H is an

X-covering subgroup of G, then H is X-mazimal in G.
The converse of 1.3. does not hold generally.

Definition 1.4. a) A group G is o-solvable if any chief factor of G is either a solvable
o-group or a o'-group. For o the set of all primes we obtain the notion of “solvable
group”.

b) A class X of groups is said to be o-closed if:
G/On'(G)e X = G eX,

where O7(G) denotes the largest normal n'-subgroup of G. We shall call m-homomorph

a w-closed homomorph and n-Schunck class a w-closed Schunck class.
In our considerations we shall use the following result of R. Baer given in [1]:
Theorem 1.5. A solvable minimal normal subgroup of a group is abelian.

2. Ore’s generalized theorems

In [4] we obtained a generalization on 7-solvable groups of some of Ore’s theorems

given only for solvable groups. In this paper we shall use the following of them:

Theorem 2.1. Let G be a primitive w-solvable group. If G has a minimal normal sub-

group which is a solvable w-group, then G has one and only one minimal normal subgroup.

Theorem 2.2. If G is a primitive w-solvable group and N is a minimal normal subgroup

of G which is a solvable 7-group, then Cg(N) = N.

Theorem 2.3. Let G be a w-solvable group such that:
(i) there is a minimal normal subgroup M of G which is a solvable m-group and
Co(M)=M;
16




ON SOME O-SCHUNCK CLASSES

(i) there is a minimal normal subgroup L/M of G/M such that L/M is a n'-group.

Then G is primitive.

Theorem 2.4. If G is a w-solvable group satisfying (i) and (#) from 2.8., then any two
stabilizers W, and W> of G are conjugate in G.

3. Some special 7-Schunck classes

Ore’s generalized theorems are a powerful tool in the formation theory of -
solvable groups. This is proved by [5], which we complete here with new results. We first
give a new proof, based on Ore’s generalized theorems, for the equivalence of D, A and

B properties (given in [7] and [3] ) on a 7-Schunck class.

Definition 3.1. ( [7]; [3] ) Let X be a w-Schunck class. We say that X has the D property
if for any m-solvable group G, every X—sﬁbgroup H of G is contained in an X- covering

subgroup E of G.

Remark 3.2. Definition 3.1. has sense because of the existence theorem of X- covering
subgroups in finite 7-solvable groups ( [5] ), where X is a 7-Schunck class. Furthermore,

any two covering subgroups are conjugate.

Theorem 3.3. Let X be a w-Schunck class. X has the D property if and only if in any

n-solvable group G, every X-mazimal subgroup is an X-covering subgroup.

Proof. Suppose X has the D property. Let G be a w-solvable group and H an X-maximal
subgroup of G. Obviously H € X. Applying the D property we obtain that H C F,
where E is an X-covering subgroup of G. But H is X-maximal in G. It follows that
H = F and so H is an X-covering subgroup of G.

Conversely, suppose that in any m-solvable group G every X-maximal subgroup
is an X-covering subgroup. Let G be a w-solvable group and H an X-subgroup of G. If
H itself is X-maximal in G, we put E = H and E is an X-covering subgroup of G. If H
is not X-maximal in G, let E be an X-maximal subgroup of G such that H C E. Then
H C FE and E is an X-covering subgroup of G. So X has the D property. a

Definition 3.4. ( [7];[3] )
a) The n-Schunck class X has the A property if for any w-solvable group G and any
subgroup H of G with coregH # 1, every X-covering subgroup of H is contained in

an X-covering subgroup of G.
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b) Let G be a group and S a subgroup of G. The subgroup S avoids the chief factor
M/N of G if SN M C N. Particularly, if NV is a minimal normal subgroup of G, S
avoids N if SN N =1. .

¢) The w-Schunck class X has the B property if for any n-solvable group G and any
minimal normal subgroup N of G, the existence of an X-covering subgroup of G

which avoids N implies that every X-maximal subgroup of G avoids N.

Theorem 3.5. Let X be a w-Schunck class. The following statements are equivalent:

(i) X has the A property;
(i) X has the D property;
(i) X has the B property.

Proof. A proof of 3.5. is given in [3], using some of R. Baer’s theorems from [1]. We
consider the same proof like in [3] for (2) = (3) and for (3) = (1).

A new proof is given here for (1) = (2). This proof is based on Ore’s generalized
theorems. Let X be a w-Schunck class and suppose that X has the A property. In order
to prove that X has the D property we use 3.3. Let G be a w-solvable group and H an
X- maximal subgroup of G. Let now S be an X-covering subgroup of G (S exists by
3.2.). We shall prove by induction on |G| that H and S are conjugate in G. Two cases

are considered:

1) GeX. Then H=S=G.

2) G ¢ X. Let N be a minimal normal subgroup of G. Applying the induction on G/N,
we deduce that HN = SIN, where g € G. Hence H C SYN. Again two cases are
considered:

a) SYN C G. Applying the induction on S9N, we obtain that H and S9 are conjugate
in S9N. Hence H and S are conjugate in G.

b) SIN = G. It follows that G = (SN)?, hence S9N = G = SN. If coregS # 1, the
inductibn on G/coregS leads to H*coregS = 9, where z € G. Then H* C S. So
H?® = S, which means that H and S are conjugate in G. Let now coregS =1. G
being m-solvable, N is either a solvable n-group or a n’-group. Supposing that N

is a m'-group we have N < On’'(G) and

G/07' (G)p(G/N)/(Ox'(G)/N),
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G/N = SN/NpS/S3NxX.

So G/O7'(G) € X, which implies by the w-closure of X that G € X, a contradic-

tion. It follows that IV is a solvable m-group, hence by 1.5., N is abelian. This and
G = SN lead to SN N =1 and S is a maximal subgroup of G. From H € l‘é.nd
G ¢ X we have H C G. Let M be a maximal subgroup of G such that H C M.
Applying the induction on M it follows that H is an X-covering subgroup of M.

We consider now two possibilities:
b.1) coregM # 1. Applying the A property on G, M < G, coregM # 1, the X-

)

(ii)

covering subgroup H of M and the X-covering subgroup S of G, we obtain
H C 5%, where £ € G. Hence H = S®. So H and S are conjugate in G.

b.2) coregM = 1. Then S and M are two stabilizers of G. Hence G is primitive.
We prove now that G satisfies (i) and (ii) from 2.3.:

There is a minimal normal subgroup M of G which is a solvable -
group é.nd Cg(M) = M. Indeed, we put M = N. We proved that N is
a solvable w-group and by 2.2. we have Cg(N) = N.

There is a minimal normal subgroup L/N of G/N such that L/N is a '-
group. Suppose the contrary, i.e. any minimal normal subgroup L/N of
G/N is a solvable m-group. Since N is also a solvable n-group, it follows
that L is a solvable 7-group. By 2.1., N is the only minimal normal
subgroup of G. If L is a minimal normal subgroup of G, obviously follows
that L = N and L/N = 1, in contradiction with L/N minimal normal
subgroup of G/N. If L is not a minimal normal subgroup of G, we have
N C L and again a contradiction is obtained by G = SN C SL =G.
So G satisfies (i) and (ii) from 2.3. Then by 2.4., S and M are conjugate
in G, ie. M = 5%, where z € G. But H C M, hence H C S*, where
S* € X. H being X-maximal, it follows that H = S*.

! 4. The “composite” of two m-Schunck classes

Let us note by D the class of all #-Schunck classes with the D property.
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Definition 4.1. ([3] ) If X and Y are two w-Schunck classes, we define the “composite”
(X,Y) as the class of all m-solvable groups G such that G =< S,T >, where S is an X-

covering subgroup of G and T is an Y-covering subgroup of G.'
In [3] we proved the following result:

Theorem 4.2. If X and Y are two n-Schunck classes, then (X,Y) is also a - Schunck

class.

Using Ore’s generalized theorems we can prove now:
Theorem 4.3. If X €D and Y € D, then (X,Y) € D.

Proof. By 4.2, (X,Y) is a m-Schunck class. Let us prove that (X, Y) has the D property

using 3.3. Let G be a m-solvable group and H an (X,Y)-maximal subgroup of G. We

prove by induction on |G| that H is an (X, Y)-covering subgroup of G. We consider two

cases:

1) G € (X,Y). Then H =G is its own (X, Y)-covering subgroup.

2) G ¢ (X,Y). Applying 3.2., there is an (X, Y)-covering subgroup P of G. We shall
prove that H = P, where z € G.

Let N be a minimal normal subgroup of G. By the induction on G/N, if we take
HN/N{X,Y)-maximal in G/N and PN/N(X,Y)-covering subgroup of G/N, we have
HN/N C PSN/N for some g € G. Hence H C PYN. Now two possibilities:
a) PSN C G. Applying the induction on PN, for H (X,Y)-maximal in PN and
P9 an (X, Y)-covering subgroup of PYN, it follows that H = (P’)g' = P99 where
g € PIN. So H = P99 ig an (X, Y)-covering subgroup of G.
b) PIN =G. Then G = PN. Again two cases:
b.1) coregP # 1. By the induction on G/coregP, we have H = P?, where z € G.
So H is an (X, Y)-covering subgroup of G.
b.2) coregP = 1. First N is a solvable w-group, for if we suppose that N is a n’-group,
we have N C O7’'(G) and

G/0r’(G)p(G/N)/(O7'(G)/N);

G/N = PN/NoP/PNN € (X,Y)
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imply G/O7'(G) € (X,Y), hence G € (X,Y), a contradiction. By 1.5., N is

abelian. From G = PN and N abelian, we deduce that PN N =1, hence P is

a maximal subgroup of G. So P is a stabilizer of G and G is primitive. Then,

by 2.1., we obtain that N is the only minimal normal subgroup of G and by

2.2. that Cg(N) = N. It is easy to notice that HN = G and so, like for P,

we have HN N =1 and H is a maximal subgroup of G. Now we consider two

possibilities:

b.2.1) coregH # 1. Applying the induction on G/coregH, we obtain that H =
P?® (z € G) is an (X, Y)-covering subgroup of G.

b.2.2) coregH = 1. Then H is a stabilizer of G. Let us notice that we are in the
hypotheses of theorem 2.4. Indeed, (i) is true, because N is a minimal
normal subgroup of G which is a solvable n-group and Cg(N) = N.
Further, (ii) is also true, for if we suppose the contrary, we obtain that
any minimal normal subgroup L/N of G/N is a solvable n-group and in
each of the two cases given below we get a contradiction:

(#): If L is a minimal normal subgroup of G, obviously L = N and
L/N = 1, in contradiction with L/N minimal normal subgroup of
G/N.

(#+#): I L is not a minimal normal subgroup of G, then N C L and
G = HN C HL = G, a contradiction.

So we are in the hypotheses of theorem 2.4. It follows that the two
stabilizers P and H of G are conjugate in G, i.e. there is ¢ € G such that
H = P*. But this means that H is an (X, Y)-covering subgroup of G.

O

An immediate consequence of theorem 4.3. is the following;:

Theorem 4.4. The class D, ordered by inclusion, forms respect to the operations of

“composite” and intersection a complete lattice.
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