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E X T E N S IO N  O F B IL IN E A R  F U N C T IO N A L S  A N D  B E S T  
A P P R O X IM A T IO N  IN  2 -N O R M E D  SPACES

S. C O B Z A Ş  A N D  C . M U S T Ă Ţ A

A bstract. The paper investigates the relations between the extension prop­

erties of bounded bilinear functionals and the approximation properties in 2- 

normed spaces.

1. Introduction

In the sixties S.Gahler ([8] and [9]) introduced and studied the basic properties 

of 2-metric and 2-normed spaces. Since then these topics have been intensively studied 

and deve loped.The references given at the end of this paper are far from being complete, 

containing only the papers related to the problems treated here.

The aim of the present paper is to study the relations between the extension 

properties of bounded bilinear functionals and the approximation properties in 2-normed 

spaces. In the case of bounded linear functionals on normed linear spaces the problem 

was first considered by R.R.Phelps [19]. For other related results see I. Singer’s book 

[20].

In the case of Banach spaces of Lipschitz functions similar results were obtained 

by the authors (see [1], [18]). The case of bilinear operators on 2-normed spaces has been 

considered in [2],

Throughout this paper all the linear spaces will be considered over the field 

K =  R  or K  =  C. A 2-norm on a linear space X  of algebraic dimension at least 2 , is a 

functional | | * ,-| | :X xX “ )> [0,oo) verifying the axioms:

BN 1) ||a;,2j|| =  0 if and only if x ,y  are linearly dependent,

BN 2) M  =  | M ,

BN 3) p * ,y | |  =  ||A|H|*,|r||,
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B N  4) II* +  y, z\\ <  II*, z\\ +  ||y, z||, 

for all x^y^z G X  and A € K  (see [9])

If ||-,-|| is a 2-norm on the linear space X  then the function p : X 3 [0,oo) 

defined by p(x ,y ,z )  =  \\x — z^y — z \\, x ,y ,z  G X  is a 2-metric on X,  in the sense of

S.Gahler [8], which is translation invariant, i.e. p (x -f a ,y -f a ,z -f a) — p(x>y,z) for all 

x,y ,z  G X  and a fixed element a G X.

For a fixed b G X,  the function p\, (x) =  ||x, 6||, x G X , is a seminorm on X  and 

the family P =  { p* : b G X }  of seminorms generates a locally convex topology on X , 

called the natural topology induced by the 2-norm

A pair (X , ||*, -||) where X  is a linear space and ||*, *|| a 2-norm an X  will be called 

a 2-normed space.

Remark 1. S.Gahler [10] considered only 2-normed space over the field R  of real numbers, 

but his definition automatically extends to the complex scalars too.

2. Continuity and boundedness properties for bilinear functionals.

Let (X , ||‘ , *||) be a 2-normed space and X u X 2 two subspaces of X. A 2- 

functional is an application f  : X i x X% K. The 2-functional /  is called bilinear 
if:

B L  1) f ( x  +  x' ,y  + y') =  f ( x , y )  +  f ( x , y ' ) + f ( x ' , y )  + f ( x ' ,y ' )

B L 2) /  (a*, 0y) =  a p f  (x ,y ) ,

for all (x ,y ) , (x ',y') in Xi  x X 2 and all a ,/? G K .

A 2-functional /  : X\ x X 2 -> K  is called bounded if there exists a real number 

L >  0 (called a Lipschitz constant for / )  such that

\f(x,y)\<L\\x,y\\, (2.1)

for all (x ,y) G X i x X 2.

This notion of boundedness was introduced by A.G.White Jr. [20] whoxlefined 

also the norm of a bounded bilinear functional by:

||/[| =  inf {L  >  0 : L is a Lipschitz constant for / }  (2.2)

Some immediate consequences of the definition are given in:

Proposition 2.1. (A.G.White Jr. [21].) Let (X, ||*,-||) be a 2-normed space, X i, X2 

two linear subspaces o f X  and f  : X\ x X 2 -»  K  a bounded bilinear functional. Then
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a) f  (x, y) — 0, for any pair (x, y) £ X\ x X 2 of linear dependent elements;

b) f  (y ,x) — —f  (x ,y) ,i.e. / is an alternate bilinear functional;

c) The norm ||/|| o f /  can be calculated also by the formulae:

ll/ll =  sup{| /(x,y ) I : (* ,y ) € X x x X 2, ||x,y|| < 1} (2.3)

=  sup{|/ (x, y) | : (x, y) G X x x X 2, ||x, y|| =  1}

-  sup{| /(x ,y ) |/||x,y|| : (x ,y) £ X r x X 2,||x,y|| >  0}.

A.G.White Jr. [21] defined a kind of continuity for 2-functionals, called subse­

quently 2-continuity by S.Găhler [11].

A 2-functional /  : X\ x X 2 K , whereX lyX 2 are linear subspaces of a 2- 

normed space (X, ||-, -||) is called 2-continuous at (x0,yo) 6 X\ x X 2 if for every e >  0 

there exists $ >  0 such that \f (x ,y) — /  (xo,yo) | < £ whenever

(*) I I * .  V -  Stoll <  S and |lar0 -  x, y\\ < S, or

(ii) ||ar0 -  x, y\\ < S and ||x0,j/o -  y|| <  S

A 2-functional /  is called 2-continuous on X\ x X 2 if it is 2-continuous at every 

point (x ,y) € X\ x X 2.

An example of 2-continuous 2-functional is given by:

Proposition 2.2. (A.G.White Jr. [21, Th 2.2]) If (X , ||v||) is a 2-normed space then 

the 2-functional ||*, -|| is 2-continuous on

It turns out that for bilinear functionals, boundedness and 2-continuity are equiv­

alent and 2-continuity at (0,0) implies 2-continuity on whole Xi x X 2 :

Theorem 2.3. (A.G.White Jr. [21, Theorems 2.3 and 2.4]) a) A bilinear functional 

f  : X\ x X 2 —> K  is 2-continuous on X\ x X 2 if and only if it is bounded;

b) A bilinear functional f  : X\ x X 2 ->• K  which is 2-continuous at (0,0) is 
continuous on X\ x X 2.

S.Găhler [11] remarked that 2-continuity of a 2-functional /  on X  x X  and 

its continuity with respect to the product topology on X  x X  are different notions. 

By proposition 2.2 a 2-norm is a 2-continuous functional on X  x X, but S.Găhler [11] 

exhibited an example of a 2-norm which is not continuous on X  x X  (with respect to the 

product topology) and gave conditions ensuring the continuity of a 2-norm on X  x X .
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There are also examples of 2-functionals which are continuous on X  x X  with respect to 

the product topology but are not 2-continuous (see also S.Găhler [11]).

3. E xtension  theorem s for bounded  bilinear 

functionals.

Let (X , ||-, *||) be a 2-normed space, X i, X 2 two linear subspaces of X  and /  : 

X\ x X 2 -> K  a bounded bilinear functional. The extension problem for /  consists in 

finding a bounded bilinear functional F  : X  x X  K  such that

(3.1)
i) F ( x yy ) =  f ( x , y ) y for all (xyy) E X t x X 2,

n) 11*11 = ll/ll*
We agree to call such an F  a norm preserving extension or a Hahn-Banach 

extension of / .  As it was remarked by S.Găhler [11], p.345 Korollar zu S.5 und S.6, the 

norm preserving extension is not always possible. Some Hahn-Banach and Hahn type 

extension theorems for subspaces of the form Y x [6], where y  is a linear subspace of X , 

b E X  and [6] denotes the subspace of X  spanned by 6, were proved in the case of real 

2-normed spaces by A.G.White Jr. [21], S.Mabizela [17] and I.Franic [7].

In the following we shall show that all these extension results can be derived 

directly from the classical Hahn-Banach theorem. This approach allows to consider 

simultaneously both the cases of real and complex scalars. /

Our methods of proofs rely upon slight extensions of Hahn-Banach and Hahn 

theorems from normed to seminormed spaces. \

In what follows (X ,p ) will denote a seminormed space (over the field K  =  R or 

C ), with p a nontrivial seminorm on X  (i.e. p /  0). It is well known that a linear 

functional x* is continuous on X  if and only if it is bounded (or Lipschitz) on X , i.e. 

there exists a number L >  0 such that

\x*(x)\ < L - p ( x ) y for a lla r€ X .

A number L >  0 verifying (3.2) is called a Lipschitz constant for x*.

(3.2)

P roposition  3.1. Let (X ,p ) be a seminormed space, X* its conjugate space and let 

q : X* -> [0,00) be defined by

q (a;*) =  supflæ* (x) \ : x  E X , p (x) <  1} (3.3)
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Then \

a) |x* (x) \ < q (x*) • p ( x ) , for all x  G X; j
b) q (x*) =  in f{L  >  0 : L is a Lipschitz constant for x*};

c) The functional q is a norm on X* and (X*,q) is a Banach space.

Proof, a) Since x* G X * there exists L >  0 such that (3.2) holds. Now, if x G X  is such 

that p (x) =  0 then x* (x) =  0 too, and the inequality a) is trivially verified. If p (x) > 0 

then p * x j =  1 so that \x* • x^ | < q {x*) , which is equivalent to a).

b) If L >  0 verifies (3.2) then \x* (x) | < X , for all x G X  with p(x)  <  1, implying 

q{x*) < L. Since L > 0 is an arbitrary Lipschitz constant it follows

q (x*) < inf{L > 0 : L is a Lipschitz constant for x*}.

Because q (x*) is a Lipschitz constant for x* it follows that

q (a?*) =  min{L > 0 : L is a Lipschitz constant for x*}

implying the equality b).

c) It is immediate from (3.3) that q is a seminorm on X*.  If x* ^  0 and X o G l  

is such that x* (xo) ^  0 then by a)

0 < |x* (x0) I <  q (a?*) • P (®o)

implying q (x*) > 0  and showing that q is a norm on X*.

The proof that {X*,q) is a Banach space is standard and we omit it. □

Theorem 3.2. (Hahn-Banach Theorem). Let (X,p) be a seminormed space (over K  =  

R  or C) with p /  0, Y a linear subspace and y* G Y* a continuons linear functional on 

Y. Define qi (y*) by

qi (V*) =  sup{| y* ( y ) \ : y e Y , p  (y) <  1}.

Then there exists a continuous linear functional x* on Xsuch that

i) x* Iy — y* and

ii) q(x*) =q i  (y*)

where q (x*) is defined by (3.3).

(3.4)

(3.5)
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Proof. The functional pi : X  -¥ [0,oo) defined by pi (x ) =  qi (y*) • p ( x ) , x € X  is a 

seminorm on X  and \x* (y) | <  pi (y) for ail y € T , i.e. y* is dominated by pi. By the 

Hahn-Banach Theorem (see e.g. [6] or [14]) there exists x* € X* such that

i) x* I y =  y*

ii) |x* (x) I <  qi (y*) • p (x ) , for all x € X .
(3.6)

By (3.6) ii) and Proposition 3.1 b) we obtain q(x*) <  qi (y*). The reverse inequality 

follows from

q(x*) =  sup{|ar* (x) | : x 6 X, p (x) <  1}

>  sup{|x* (y) I : y e Y,p (y ) <  1}

=  Qi(y*)-

□

too

Hahn’s theorem ([6, Lemma II. 3.12) can be transposed to the seminormed case

Theorem 3.3. (Hahn Theorem). Let(X,p) be a seminormed space, Y  a linear subspace 

of X  and xo € X  \ Y. Then there exists a functional x* € X* such that

i) x* (x0) =  1 and x* (y )  =  {0 }; 

ii) q(x*) =  S-1

where 6 =  inf{p (xo — y) : y € T ).

Proof. Observe that xQ £ X \ ¥  implies S >  0. Let Z =  Y+Kxo  and let z* : Z -+ K  be 

defined by z* (y +  axo) =  a, for y € y  and a  € K.  Obviously that z* is linear and, for

a # 0 .

Iz* (y +  ax0) I =  |a| <  |a| -<5_1 - p ( o -1 y +  x0) =  <5-1 -p (y  +  ax0)

Since, for a  =  0, |z* (y) | =  0 <  6-1 • p (y) it follows the continuity of z* and 

Qi (-2*) <  <S-1 , where q\ (z*) =  sup{|z* (z) | : z € Z,p(z )  <  1}. Taking a minimizing 

sequence (y„ ) Ç Y  (i.e. p(xo — yn) 6, for n -> oo), we obtain

l  =  z* (x0 -  yn) =  \z* (xo -  yn) I <  Qi (z*)-p(xo -  y « ) ,

which for n —» oc gives q\ (z*) > S~1, implying q\ (z*) =  <5_1.

Now Theorem 3.3 follows from Theorem 3.2 applied to Z  and z*. □
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Remark 2. The functional x* € X *, arj =  6 • x*, verifies the conditions:

i) * î (x0) =  6 and (Y) =  {0 } ^  ^

it) ? (** ) =  1

Pass now to the extension theorems for bounded bilinear functionals. The reduc­

tion to Hahn-Banach and Hahn’s theorems for bounded linear functionals on seminormed 

linear spaces will be based on the following result:

P roposition  3.4. Let (X , ||-, -||) be a 2-normed space (over K  =  R  or C ),Z  a subspace 

of X , b G X  \ {0 } and let [b] be the subspace o f X  spanned by b. Denote by p\, the 
seminorm on Z given by

pb(z) =  \\z,b\\,zeZ,

and let be its conjugate norm on Z*, in the sense of Proposition 3.1. Then

a) If f  : Z  x [6] -> K  is a bounded bilinear functional then the functional 
z * : Z - > K  defined by z* (z) =  f  (z,b), z G Z is a continuous linear functional on Z and

* (**) = ii/ ii-

b) Conversely} if z* is a bounded linear functional on Z, then the 2-functional 

f  : Z x [b]-+ K  defined by f  (z,otb) =  az* (z), for (z,a) G Z x K, is a bounded bilinear 

functional and

n / i i = »  (**)•

Proof, a) Obviously that, for a given bounded bilinear functional f  : Z x [b] -¥ i f , the 

functional z* : Z -*  K  defined by z* {z) =  f  (z, b) , z G Z, is a linear functional on Z and

\z* (z) I =  1/ (z 9 b) I < ll/ll • Ik, 6|| =  ll/ll • pt {z) ,

for all z G Z, implying that z* is a continuous linear functional on the seminormed space 

(Z,Pb) and

»  C O  < 11/ 11-

On the other hand

1/ (z,ab) I =  1/ (az, b) | =  \z* (az) | <  qb (z*) ■ pb (az) =  qb (z*) • ||az, 6|| =  qb (z*) ■ \\z, a&||
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implying that qb (z*) is a Lipschitz constant for / ,  so that ||/|| <  qb {z*) and, therefore,

ll/ll =  9b (z*) ■
b) Suppose now that z* is a given continuous linear functional on the seminormed 

space (Z, pb) and define /  : Z  x [b] ->■ K  by /  (z, ab) =  a-z* (z) , (z, a) € Z x K. Obviously 

that /  is a bilinear functional and

\f(z,ab) I =  Iaz* (z) | =  \z* (az) | < qb (z*) •pb (az) =

=  9b (z*) ■ ||az, b|| =  qb (z*) ■ \\z, o6||,

for all (z, a) G Z x i f ,  showing that /  is a bounded bilinear functional and that ||/|| < 

9b {z*).

Taking into account the fact that pb (z) =  ||z,6|| we obtain

qb (z*) =  sup{|z* ( z ) \ : z € Z ,  || z, 6|| <  1} =  sup{|/ (z, b) \ : z € Z, \\z, 6|| < 1} <

<  s «P {| /(^ «^ )l : (z,a)  € Z x K,\\z,ab\\ < 1} =  ||/||

Again the equality ||/|| =  qb (z*) holds. □

Now we are in position to prove the promised extension theorem.

Theorem 3.5. (Hahn-Banach Extension Theorem, A,G. White Jr. [21, Th.2.7]) Let 

(X, ||-, H) be a 2-normed space (over K  =  R o r C j,  Y a subspace of X ,b  € X  and let [b] 
be the subspace o f X  spanned by b. If f  : Y  x [b] -*  K  is a bounded bilinear functional 

then there exists a bounded bilinear functional F  : X  x [b] K  such that

i) F\Yx[b)= f, and

H) Ill'll = ll/ll- ‘
Proof. Let pb : X  [0,oo) be the seminorm defined by pb (x) =  ||x,6||, x € X , and let 

y* : Y  -*  K  be given by y* (y) =  f  (t/, b). Then by Proposition 3.4 a), y* is a continuous 

linear functional on y  and q'b (y*) =  ||/||, where

9b (V*) =  sup{|ÿ* ( y ) \ : y e Y ,  pb (y) <  1}. (3.10)

By Theorem 3.2 there exists a bounded linear functional x* € X*  such that 

x* \y= y* and qb (x*) =  q'b (y*) ,where

qb (x*) =  sup{|ar* (x) | : x  € X,pb (*) <  1}. (3.11)

8



EXTENSION OF BILINEAR FUNCTIONALS AND BEST APPROXIMATION IN 2-NORMED SPACES

Defining now F  : X  x [6] -)► K  by F  (x, ab) =  a • x* (x ) , for (x, a ) G X  x K  

and applying Proposition 3.4 b) it follows that the bilinear functional F  fulfils all the 

requierements of the Theorem. □

The analogue of Hahn’s theorem for bilinear functionals is:

Theorem  3.6* (S.Mdbizela [17, Th.2]) Let (X , ||«, *||) be a 2-normed space over K  — R  

o r C ,Y  a linear subspace o f X , b € X  and [b] the subspace of X  spanned by b. If xo E X  

is such that S >  0, where

6 =  inf{||a;o — Vyb\\ : y e Y } (3.12)

then there exists a bounded bilinear functional F  : X  x [6] -> K  such that

i) F  (xo, b) =  1, F  (y , 6 =  0) for ally € Y, and 

it) I I F U ^ - 1
(3.13)

Proof. Consider again the seminormed space {X,pb) , where (x) =  ||x,6||,x G X , and 

apply Theorem 3.3 to obtain a bounded linear functional x * on X  such that

*) s* (®o) =  1 and x* (Y) =  {0 }, and ^

ii) qb(x*)

where qţ, (x*) is given by (3.11).

Defining F  : X  x [6] -+ K  by F  (x, a6) =  a  • x* ( x ) , (x, a) € X  x K,  and 

applying Proposition 3.4 b), it follows that the bounded bilinear functional F  verifies the 

conditions (3.13) of the Theorem. □

Remark 3. S.Mabizela [17, Th.2] requières for xo and 6 to be linearly independent. Ob­

serve that if Xo, 6 are linearly dependent then, by the axiom 

BN 1) in Section 1, ||xo, 6|| =  0 and a fortiori <5 =  0, because

0<(5<||xo-0,6|| =  ||xo,6||=0

Therefore the hypothesis $ >  0 forces Xo and 6 to be linearly independent and xo G X\Y, 

where Y  denotes the closure of Y  in the seminormed space (X,pt,).

An immediate consequence of Theorem 3.6 is the following result, known also as 

Hahn’s Theorem:
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T h eorem  3.7. I f  (X , ||-, ||) is a 2-normed space and x0,b are linearly independent el­

ements in X  then there exists a bounded bilinear functional F  : X  x [6] -*  K  such 
that:

i) F ( x 0yb) =  ||a?0,6||, and

ii) ||F|| =  1.
(3.15)

Proof. Putting Y — {0 } in Theorem 3.6 and taking into account the linear independence 

o f xq and 6, one obtains 6 ~  ||a?o» b\\ >  Ô.

By Theorem 3.6, it follows the existence of a bounded bilinear functional G : 

X  x [b] - »  K  such that G (xo,b) =  1 and ||G|| =  6~x. Then F  =  S • G satisfies the 

conditions (3.15) of the theorem. □

4. Unique extension of bounded bilinear functionals and unique best approx­

imation

For a 2-normed space (X , ||-, -||), a subspace Y  of X  and b e  X  denote by Y* the 

linear space of all bounded bilinear functionals on Y x [6]. Equipped with the norm (2.2), 

Y* is a Banach space (see A.G.White Jr.[20j) The Banach space X% is defined similarly.

For /  e  Y* denote by E  ( / )  the set of all norm-preserving extensions of /  to 

X  x [6],i.e.

E( f )  = { F € X * : F  |rx[6]=  fand\\F\\ =  ||/||} (4.1)

By Theorem 3.5, E( f )  ^  <f> and E  ( / )  is a convex subset of the unit sphere 

S (0, Il/H) =  {G  € Xl  : ||G|| =  ll/H}. Indeed, for F1,F2 € E  ( / )  and A € [0,1],

(Ai5) +  (1 -  A) F-z) |yX[(>]=  /

and

IIAFt +  ( l - x )  F2II <  AHFill +  (1 -  A) \\F2\\ =  A||/|| +  (1 -  A) ||/|| =  ||/||. 

Denoting G =  AFj +  (1 — A) F2 it follows G |yx[»]= /  and
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||G|| =  sup{|G(x, otb) | : (y ,a ) e  X  x Üf, ||a:, «6|| <  1} >

>  sup{|G (y,ab) | : (y,ot) € Y  x X,||y,a6|| <  1 } =  ||/||

For a subspace F  of a 2-normed space (X> ||-, -||) let

Ybx  =  {G G X\ : G ( Y x  [6]) =  {0 } }  (4.2)

be the annihilator of Y  in X]j.

For a nonvoid subset Z  of X|j the distance of an element F  £ to Z is defined 

by

d (F, Z ) =  inf{||F -  G|| : G G Z}. (4.3)

An element G0 € Z  such that ||F -  G0|| =  d(F , Z) is called an element of best 

approximation (or a nearest point) for F  in Z.

Let

Pz (F) =  {G  € Z  : ||F  -  G|| =  d (F, Z )} (4.4)

denote the set of all elements of best approximation for F in Z. The set Z is called

proximinal if Pz (F) ^  0 for all F  € Xj*, Chebyshev provided Pz (F) is a singleton for all

F £ X% and semi-Chebyshev if cardPz (F) <  1, for all F e l J .

A subspace of the form Ŷ ~ of Xjj is always proximinal and we have simple

formulae for the distance of an element F  e  x j  to and for the set of nearest points. 
«

Theorem  4.1 . I f  (X , ||-, ||) is a 2-normed space, Y a subspace o f X , b G X  and F  G Xjj

then

d (F ,n J-) =  ||F|yx[6j|| (4.5)

Moreover, Ŷ  - is a proximinal subspace o f Xjj and

Pyj. (F) =  F - E ( F  |yxW ) =  { F - H : H G E ( F  |Kx[6]) }  (4.6)

Proof. Since (F  — G) |yx [6]=  F  |k x [&]> for any G G Y -̂ it follows 

\\F\yx[b]\\ =  \\(F-G)\Yx[b]\\<\\F-G\\,

so that

W F W ^ W K d iF Y , , -1) .
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To prove the reverse inequality observe that /  =  F  |yx[&]€ Yb. Now if H  is a norm­

preserving extension of /  to X  x [6] then F  — H  € Yhx  and

11̂  Wxm II =  \ m  =  II*1 -  (F -  H)  Il > d (F, Y f ) , 

proving the formula (4.5).

For H € E ( F  |yx[fr]) we have F  -  H  € Y x  and ||F -  ( F - t f ) l l  =  ll^ll =  

||F Iy x[6] || =  d (F, Yj,-1) , showing that F — H is a nearest point to F  in Y 1 .

Conversely, if G is a nearest point to F  in Ybx  then (F  — (?) \yx[b]~ F  \yx\b] 
and, denoting H =  F  — G, it follows G =  F  — H  and

\\H\\ =  ||F -  G\\ =  d (F, Y f )  =  \\F |k X[6] II

showing that H  is a norm preserving extension for F  |yx[&] . The equality (4.6) is proved 

and since, by Theorem 3.5, E  (F  |yx[&]) ^  0, for all F  € X b, it follows the proximinality 

of the subspace Ŷ ~ in X®. □

Now we are in position to state and prove the duality theorem relating the 

uniqueness of extension and of best approximation. Recall that for normed linear spaces 

and bounded linear functionals a similar result was first proved by R.R.Phelps [18].

T h eorem  4.2. Let (X , ||-, -||) be a 2-normed space, Y  a subspace of X  and b € X . Then 

the following assertions are equivalent:

1° Every f  € Yb has a unique norm preserving extension to X  x [6];

2° Y x is a Chebyshev subspace o f the Banach space X b.

Proof. The Theorem is an immediate consequence of the formula (4.6) from Theorem

4.1. □
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