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A b strac t. This work gives a series of characterizations, others than the previ­
ously known ones of the abelian groups with the direct summand intersection 
property, for short D.S.I.P., that is of those groups in which the intersection of 
any two direct summand is a direct summand as well. All through this paper 
by group we mean abelian group in additive notation.

1. The G eneral Case

D efinition. We say that a group A has the small direct summand intersec­

tion property (for short S.D.S.I.P.) if the intersection of any family of direct summands 

of A is again a direct summand in A.

Obviously, if a group has S.D.S.LP., it also has D.S.I.P.. The converse is generally

false.

Let A be a group and Sd(A) =  {X  < A \X  is a direct summand in A}. If A 

has S.D.S.I.P., then for any T, 5  € 5d(A), T  fl S  € Sd(A) and according to [16,1.4.47.], 

Sd(A) is a complete lattice.

Definition. A subgroup G of group A is called absolute direct summand (of 

A), if for any subgroup H  < A, H  — G-high in A, A =  G 0  H.

The absolute direct summands have been studied by Fuchs in [7]; there he demon­

strated the following theorem:

T heorem  1.1. A subgroup B  of A  is an absolute direct summand, in A, if and 

only if: B  is divisible or A /B  is a torsion group, whose p-component is annihilated by 

pk, whenever B /pB  contains an element of order pfi.
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Let Sda(A) =  {X  < A \X  is an absolute direct summand in A} be the set of 

absolute direct summands of A. Now we proof the following:

T heorem  1 .2. If the group A  has D.S.I.P., then for anyT ,S  € Sda(A), T n S  G
Sda(A) .

Proof. We are going to show that, together with T  and S  and T n S  satisfies 

(1 .1 .) as well. Let by A  =  T  0  T ' — S  0  S'. According to the hypothesis T n S  is direct 

summand in S, so S  — T  n  5  0  S".

Case 1. If T or S are divisible, then, according to [6,20.(E).], T n S  is divisible 

and T n S  € Sda(A).

Case 2. If T  and S  are not divisible groups, then, according to (1.1.), A /T  and 

A /S  are torsion groups. So for any a € A, there is a n > 0 so that na G T  and there 

is a m > 0 so that ma € S. Then [m,n]o 6 T n S  ([ra,n] being the smallest common 

multiple of m and n). So A /(T  n S) is a torsion group. Let A /T  n S  =  Q ^(A /T  fl S)p
p

be, the direct decomposition of A/(T n S) in its own p-subgroups, according to [6,8.4.]. 

We suppose that there is a x  G T  fl S  so that pkx  € p(S fl T) C pS n  pT . So, there is 

x £ S  so that pkx  € pS  and x  £ T  so that pkx  € pT. Now from (1.1.) it follows that 

pk(A/S)p =  5  andp*(A/T)p =  T. Thenpk(A/TnS)p = T n S  too. So Ţ n S  G Sda{A).
Now we are going to present some other two necessary and sufficient conditions 

for a subgroup B  of A  to be a direct summand in A, if A has certain properties.

Theorem  1.3. Let A be a group of finite rank, with property that the neat 

subgroups of A  coincide with its direct summands. Then the following statements are 

equivalent for a subgroup B  of group A:

(a) B  is a direct summand in A;

(b) for any prime number p, rp(A) =  rp(B) +  rp(A /B )i;

(c) there is a subgroup C < A, C — B-high in A so that for any prime number 

P, P{A) Ç p(B) +  C.
Proof, (a) => (b). If B  is a direct summand in A, then A  S' B@ A/B  and r(A) = 

r(B )+ r(A /B )  (see [5,2.2.5.]). Then: r0(^) +  y ^ r p(^l) =  r0(B) + ̂ r p(B) +rp(A/B) +
p p

T T rp(A/B). But r0(A) = r0(B) + r0(A /B) ([5,2.2.(c)]). So £ > P(A) =  ^ > ( 5 )  +
V V P

^ ~^rp{A /B ). For any prime number p , rp(A) =  r(Ap) =  r(S(Ap)) =  dimZ(p) A[p], and
p
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if A = B  ® <7, then A\p] = B\p] 0  C\p] (there is immediate checking). So dim^(p) A\p] = 

dimz(p) B\p] 4- dimz(p)(A/jB)[p].

(b) => (a). If rp(A) =  rv{B) + rp(A /B), is valid for any prime number p, then 

by summing up after all prime numbers and considering the relation: r0(A) = r0(B) + 

r0(A/B) (which occurs for any subgroup B  of A), we obtain: r(A) = r(B) + r(A /B ). So 

A ^  B  ® A/B, according to the hypothesis and to [6, p.132].

(a) => (c). If B  is direct summand in A , there is C < A so that (7 is B-high in 

A, A =  B  0  <7, and for any prime number p, pA ■= pB  + pC C pB  + C.

(c) => (a). If (c) occurs, then, according to [5, consequence of 2.3.1.], A — B® C.

Applying (1.3.) to groups with D.S.I.P. we obtain:

Corollary 1.4. For an abelian group A, which satisfies (i)-3), the following 

statements are equivalent:

(a) A has D.S.I.P.;

(b) for any two direct summands T  and S  and for any p-prime number rp(A) =  

rp( T n S ) + r p(A /T D S );

(c) for any two direct summands T  and S t there is a subgroup U < A, U — T n S -  

high in A, so that for any p-prime number, pA  Ç p(T n 5) + U.

Further on we are going to present two characterizations of the abelian groups 

with D.S.I.P. using the groups of extensions.

Theorem 1.5. Being given an abelian group A, the following statements are 

equivalent:

a) A has D.S.I.P

b) for every decomposition A  =  B  © C, and ft : B  -* (7 an epimorphism, the 

induced map J3* : Ext(B ,G ) -4 Ext(C,G) is monomorphism, for any group G.

Proof, (a) (b) Being given A as a group with D.S.I.P., A =  ®  C and /? : B  -*

(7 an epimorphism, then: (E) 0 kerfi -> B  -4 C -4 0 is an exact splitting sequence 

(according to [10, Proposition 1.4.]) and represents an element from Ext(C, kerfi). From 

[6,51.3.] we have the following exact sequence:

0 -¥ Ham(C,G) -* H om(B,G ) Hom(ker/3,G) 5  Ext(C,G) %

^  Ext(B ,G ) Ext(ker0,G ) —> 0.

Since (E) is splitting, for any r) : kerfi -4 G , E+(ri) =  r)E € Ext(C,G) is a splitting 

extension according to [6, 51.1]. So ImE* = 0 =  kerfi* and (3* is a monomorphism.
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b) => a). We consider the two exact sequences above mentioned. If (3* is 

monomorphism, then feer/3* =  0 =  Im E *, that is, for any 77 : kerfi —> G, 77B is a 

splitting extension. If G =  ker/3 and 77 =  l*er/?j we get (13) a splitting extension and 
according to [10, Proposition 1.4.], A  has D.S.I.P..

Theorem 1.6. (the dual of (1.5.)) Let A be an abelian group.

a) I f A  has D.S.I.P., then for any B ,C  € Sd(A) and a : B  - ï  C a monomor­

phism, the induced map a* : Ext(G , B ) -* Ext(G , C) is a monomorphism, for any group
G.

b) I f for any B  < C € Sd(A) and a  : B  C monomorphism, the induced map 

a* : Ext(G, B) —> Ext(G ,C) is a monomorphism for any group G, then A has D.S.I.P..

Proof, a) Being given B ,C  £ Sd(A) and a : B  - ï  C a monomorphism then 

a (B) ~  B  is a direct summand in C and (E ) : 0 —> B  A  C -* C /B  0 is an exact 

splitting sequence. From [6,51.3.] we get the following exact sequence:

0 -► Hom(G,B) ->• Hom(G,C) -> H om {G ,C /B )

^  Ext(G ,B) 2* Ext(G, C) -> Ext(G, C /B ) ->• 0.

If rj : G —»• C /B  is some homomorphism then £77 =  13* (77) € 13a;£(G,2?) is a splitting 

extension, according to [6, 51.2]. So ImE* — kera* =  0 and a* is a monomorphism. (It 

can be noticed that this implication is always valid; the condition that A  should have

D.S.I.P. hasn’t been used anywehere).

b) We consider the two exact sequences from point a). If a* is a monomorphism, 

then kera* =  0 =  ImE*. So, for any 77 : G -> C /B , Erj is a splitting extension of B  by 

G. If G =  C /B  and 77 =  1 c/b * {&) is a splitting extension, that is B  is a direct summand 

in G. Now, considering, H  as another direct summand in A, noting B  =  H  D G and 

a : H  C\C C the inclusion map, we find that H  n  G € Sd(A), that is A  has D.S.I.P..

We close this paragraph with the following result:

Theorem 1.7. The group A has D.S.I.P., if and only ifTor(A , G) has D.S.I.P., 

for any group C.

Proof. A  being a group with D.S.I.P., and Tor (A, C) =  Tor(T , C)®Tor(T\ C) = 

Tor(S , C ^ T ot̂ S ', G) two direct decompositions of Tor(A , G), then T ot(t4., C) = T or(T® 
T ',C ) 9É r o r ţS e S ^ G ) ,  according to [6,62.(E).].(*) But Tar{A,C) ~  Tor(B,C) has 

an exact place if A  ~  B, as the map : (a,7n,c) »-* (&,7n,c) is an isomorphism be­

tween the generators of Tor(A,C) and those of Tor(B,C). This means that A  £
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T  © V  S  S  0  S' and as A has D.S.I.P., i i a m S e r ® P .  Then Tor(A, C) “  

Tor(T  n S  0  T" ® T ',C ) “  Tor(T n 5,C) 0  Tor(T",C) 0  ro rÇ r.C ) (**). Since 

Tor(T  n S ,C ) =  T,or(T,C7) 0 Tor(S,<7), from relation (**) it follows that Tor(A,C) 

has D.S.I.P..

Viceversa, we suppose that Tor(A , C) has D.S.I.P. and let A =  T 0  V  =  5  © S' 

be two direct decompositions of A. Then Tor (A, (7) “  Tar(T  0  T ',C ) S  Tor(T, C) 0  

Tor(T',C) “  Tor(5 0  S ',C ) “  Tor(S,C) 0  ro r (5 f,C) “  Tor(T,C) n Tvr(S,C) 0  

Tor(£/, C) S  Tor(T  n 5, C) 0  Tor(t/, C) “  Tor((T n 5) 0  t/, (7), where t/ < A. Then 

A “  T  n 5  0  17, which means A has D.S.I.R.

Since Tor(A , C) ~  Tot̂ C, A), we also have its symmetric of (1.7.).

C orollary 1.8. The group C has D.S.I.P. if and only if Tor (A, C) has this 

property, for any group A.

2. Torsion groups

The following proposition presents a series of elementary properties of p- 

groups with D.S.I.P..

P roposition  2.1 . A being a p-group with D.S.I.R the following statements

occur:

(a) A is a simply presented group;

(b) A has a nice system;

(c) A has a nice composition series;

(d) A has the projective property relative to all the balanced-exact sequence of

p-groups; »

(e) A is a direct summand of a direct sum of generalized Priifer groups;

(f) A is totally projective;

(g) A is fully transitive;

(h) For any increasing sequence of ordinals and symbols oo, u — (cr0, . . . ,  crn, . . .  ), 

A(u) and A/A(u) are totally projective.
Proof. If A is a p-group with A D.S.I.P., either is indecomposable or A = 

Bp 0 Cp, where Bp =  Z(p), Cp =  0 or Cp = Z(p°°) (see [12, Theorem 2.]).
TThp
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(a) Since Z(pn), n E N* and Z(p°°) are simply presented groups, and a direct 

sum of simply presented groups is again a simply presented group (see [6, §83.]), it follows 

that A is a simply presented group.
(b) By [6,83.2.], every simply presented p-group has a nice system.

(c) , (d), (e), (f). The statements of points (b), (c), (d), (e) and (f) are equivalent, 

according to [6,81.9.] and [6,82.3.].

(g) Any totally projective p-group is fully transitive (see [11] or [6,81.4.]).
(h) Every totally projective p-group A has the enunciate property, according to

[6,§83.].

The following result makes another connection between the torsion p-groups with 

D.S.I.P. and the torsion product.

P roposition  2.2. A being A  a p-group with D.S.I.P., E  a pure subgroup in A 

with Z(p°°) Ç £7, then Tor(E , G) is a balanced subgroup of Tor(A, G), for any group G.

Proof. According to the hypothesis and to [12, Theorem 2.], A is the direct sum 

between a divisible group and a bounded group. Then any subgroup of A, that is for E 

as well, is a nice subgroup, as the equality from [6,79.2.] is clearly demonstrated (see [6, 

p.75]). If E  is pure in A and Z(p°°) C £7, then pE  =  E  flpA =  E  fl Z(p°°) = Z(p°°) and 

pA + E  = Z(p°°) + E  =  £7. So (A /E )1 =  0 and according to [6,80.(G).], E  is an isotype 

in A. Then E  becomes a balanced subgroup in A. According to [6,62.(F).,62.(D).], only 

the case in which G is a p-group is of some interest (the other ones being quite ordinary). 

From [6,63.2.], and from [6, p.75] we find that Tor(E,G) is a nice subgroup in Tor(A,G). 
We demonstrate that Tor(£7, G) is an izotype in Tor(A, G). The equality paTor{E , G) = 

Tor(E ,G )r\ptrTor(A,G) becomes, according to [6,64.2.]: T or(jf E,p*G) =  Tor(E,G) n 

Torip*A^p^G), which is quite obvious as paE  =  E  rip*A. So Tor(E,G) is balanced in 

Tar{A,G).

Further on we are going to determine the ring E(A) and the group AutA  of the

endomorphisms, respectively of the automorphisms of a torsion group A, with D.S.I.P..

For the beginning we have the following basic remark:

R em ark  2.3. If A =  ^  Ai is a direct decomposition of the group A in fully 
îç/

invariant subgroups, the ring E(A) of its endomorphisms is the direct product of the
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rings of the endomorphisms of the groups A*, i € J, that is:

i€l

Proof. If /  € EndA , then V i £ / ,  /(A*) Ç A*. Noting f\A i /*, i £ / ,

we obtain the map /  »-> {fi)i^i € JJlS(A i), which is an isomorphism from E(A) to
i£l

m + ) -
i£l

Lem m a 2.4. I f A is ap-group with D.S.I.P., then:

E(A) “  A,

or

E (A )~ M % xmp (Z(p)) © I I lZ ( p )  I ®Rp — I J \Z (p )  J © I J \Z (p )  I (BRp,
\ mP J  \ mp /  \ mP /

where:

' - m p £ N  or mp = oo;

- A f^ xmp(Z(p)) is the ring of the square matrices of order mp with elements 

from Z{p) and the columns of which have a finite number of non-null elements;

- Rp = 0 or Rp =  Q* - the completion, in p-adic topology of Qp - the ring of 

p-adic integers.

Proof. A being a p-group with D.S.I.P., if A is indecomposable, then there 

is n £ N* so that A =  Z(pn). In this case E{A) =  End(Z(pn)) =  Z(pn) = A 

(see [6,§43]). If A is decomposable, then, according to [12, Theorem 2.], A =  Bp ® 

Cp, where Bp — ^ Z ( p ) ,  Cp =  0 or Cp =  Z(p°°). So jE(A) =  H om(A,A) =
TT%p

Hom(Bp®Cp,Bp®Cp) 5? Hom(Bp, Bp)®Hom(Bp, Cp)®Hom(Cp,B p)®Hcim(Cp, Cp) = 

EndBp®Hom{Bp, Cp)®EndCv (*) (according to [6,43.1., 43.2., 43.(A).(iii)]). The group

EndBp = End  0  Z(p) is isomorphic to the ring of the square matrices
\m p )

of the type mp x mp, where € -End(Z(p)) ^  Z(p), and for which the sum of ele­

ments on each column exists in the finite topology of E{BP) (see [6,106.1.]). Noting the 

M{i l xmp{Z(p)) - ring of the square matrices of order mp x mp, having elements from 

Z(p) with its columns having a finite number of non-null elements, we find that E{BP) “

Mm!xmp(Z(p)). Hom(Bp, Cp) = 0 or Hom(Bp,Cp) = Horn ® Z ( P ) , V ) C*L
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p i ­

l i  Hom{Z(p), Z(p°°)) “  n  2 (p°°)[p] s  I I  Z (p) (see [6-§43])- Finally, Æp =  £nd(7p = O
Tf\p trip Trip
or jRp =  EndCp =  i?nd(Z(p°°)) “  Q*, according to [6,§43]. Replacing in the relation (*) 

we obtain the first isomorphism of the statement.

The second isomorphism can be stressed out in the following way:

EndBp =  Ham(Bp, Bv) =  Ham  j 0  Z(p), 0  Z(p) J a\mp mp J

~  I I Hom  ( z (p), ® ZW j - I i n  Ham{Z{p), Z{p)) a  EndZ(p) a  J J  Z(p).
nip y Trip J  nip trip nip

Theorem 2.5. / / A is a torsion group with D.S.LP., then:

£ ( A ) a (  i i  A ,]© !  n  M ^ xmp(z (p )))® ( n  n < ^ < p » )® (  n  ^
\p 6 P o  /  \ p e P \P o  J \p e P \P o  m p J  \ p € P \P o

■ f n * W  n  ( n z w ) ) ® (  n  n z w ) ® (  n  * > ) .
\pePo )  \peP \P o  \nip /  J  \pZP\Po mp /  \ p e P \ P 0 )

where:

i) P  is the set of all prime numbers and Pq Ç P;

ii) Ap is an indecomposable p-group, for any p € Pq;

Hi) M ^ XTThf(Z(p)) and Rp have the same meaning like (2.4J , for anyp € P \P q- 

Proof. According to [18,3.3.], a torsion group has D.S.I.P., if and only if it takes

the form: A  =  ©  Ap I © ©  Ap J , where Ap is an indecomposable p-group, for
\P € P o  /  \p € P \P o  J

any p 6 Pq, and for any p e P \  Pq, Ap = Bp © Cp, with Bp = 0  Zip), Cp = 0
T7%p

or Cp =  Z(p°°). Since the two direct summands of the decomposition of A  are fully

invariant (because if A*, i € J, are fully invariant subgroups of group A, then ^  Ai has
*e/

the same property - see [6,§2.]), it follows that

E(A)s iE  0 Ap © 0  Ap ] a
\peP« )  \ p£P\Po

- n^p) ® n E(BPecP)\si
\p6Po J \peP\Po )

— fn^p)®f n ]©( n n̂ )|® n ^
\pÇPo J \p€P\Po J \peP\Po *», /  p€P\Po
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iia. ® n nz<j>> ® n nz« ® n *>)•
\ p € p o )  \ p e P \ P o m l  }  \p e P \P o  m p }  \p e P \P 0 /  

according to (2.4.).

Lem m a 2.0. I f A is a p-group with D.S.I.P., then there is a np E N* so that 

the group AutA is isomorphic to the multiplicative group U(Z(pnp), of the units of the 

ring (Z(pn*),+ ,-), or:

Aut A~U( M%xmp(Z(p)))® ( n ^ C p -1) )

-  \ Y [ Z ( p - l )  ®  [ Y [ Z ( p - l )  © £ / ( i^ ) ,

where:

- U ( M ^ Xmp (Z(p))) is the multiplicative group of the units of the ring M ^ xmp (Z(p));

- U(RP) =  0 or U(Rp) “  Z (p -  1) x Jp (Jp being the additive group of Qp).

Proof. A  being a p-group with D.S.I.P., if A is indecomposable, then there is

a n  E N*, such that A  =  Z(pn). In this case AutA  =  Aut(Z(pn)) is isomorphic to the 

group U(Z(pn)), presented in the statement, as an automorphism of A  is an unit of E(A). 

lî A = Bp 0  Cpy with Bp = ^  Z(p), Cp =  0 or Cp = Z(p°°), then an automorphism ofTOp
A is a inversable element of the direct product (of the direct sum) of the rings of (2.4.). 

Considering that U(Z(p)) ^  Z ( p - 1) and t/(Q*) 9* Z (p—l ) x J p (according to [6,127.1.]), 

we obtain the isomorphisms of the statement.

Similar to the proof of (2.5), but using (2.6.) the following result can be demon­

strated:

Theorem  2.7. I f A is a torsion group with D.S.I.P., then:

AutA 9* I n ' W ’ » w  n  ^ Mïïx m ,(z ( p ) ) ) |æ (  n  ( n ^ - 1) ) ) ®
\p£Pb )  \peP \P o }  \peP\Po \ mp )  )

© (  n  ® [ n u ( z ( p ^ ) ) ] © (  n  ( n ^ - 1) ) ) ®
\pÇP\Po )  \P(=P0 }  \p€P\Po  \m j / /

©I n n ^ - 1) ® n w))»
p̂gp\Po \ mp )  )  \ pgp\Po

where the notations have the same meaning like in (2.6.).
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R em ark  2.8. Since the groups Bp, p E P, are elementary p-groups of rank mp, 

these are vectorial spaces over the field Z(p) (of characteristic p), and dim Bp = mp, 

and any automorphism of Bp is a linear transformation of this space, it follows that 

M ^ xmp{Z(p)) is isomorphic to the general linear group GL(mp,p).

3. Torsion-free groups

In [18,4.1.] we have demonstrated that any torsion-free divisible group has 

D.S.I.P.. Using this we are going to demonstrate a few interesting results.

Theorem  3.1. Let A be a torsion-free group with the property that for any 
epimorphism 0  : B  —► C (B and C being arbitrary groups), the induced map 0* : 

Ext(C ,A) E xt(B ,A ) is a monomorphism. Then A has D.S.I.P..

Proof. If 0 : B  ->■ C is an epimorphism, then (E ) 0 ker0 -¥ B  -* 

C -* 0 is an exact sequence. Prom [6,51.3.], we obtain the following exact sequence:

0 -* Hom(C,A) -► H om (B,A) -+ Ham(ker(3, A) 5  Ext{C,A) £  Ext(B , A) -> 

Ext(ker0,A) —> 0. Since 0* is monic, it follows that ImE* = 0, that is for any 

77 : ker0 -> A , E*(rf) =  r)E is splitting. Now considering B = D - the divisible hull 

of A, C =  D/A, 0 = ita - the canonic projection of D on D /A  and 77 =  1^, we find that

1 a E  ^  E  is a splitting extension, that is A  is a direct summand in D. Then [6,20.(E).], 

shows that A  is divisible. Now [18,4.1.] completes the proof.

R em ark  3.2. It can be easily demonstrate that the converse of (3.1.) occurs 

for any divisible group.

Further on we are going to see what conditions the groups A  and C have to 

satisfy so that H om (A ,C ) may have D.S.I.P..
P roposition  3.3. 1) A  and C being two abelian groups Hom(A , C) has D.S.I.P. 

in any of the following situations:

a) A  is torsion-free and divisible;

b) C is torsion-free and divisible;
c) A  is torsion-free indecomposable, C is divisible and A  © C has D.S.I.P.;

d) A is torsion-free with D.S.I.P. and C is torsion-free of rank 1;

e) A  is torsion-free of rank 1 and C is torsion-free with D.S.I.P.;
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2) If A  and <7 are torsion-free of rank 1, with t(A) < t(C)y then for any index

set /, the group H = Hom(AyC ) has D.S.I.P.. In particular E  = Q ^E ndA  has 
i i

D.S.I.P., for any torsion-free group A  of rank 1.

Proof. 1) a) If A  is torsion-free and divisible, then for any group (7, Hom(A , C) 

is torsion-free and divisible ([6,43.(G).]). Now we apply [18,4.1.].

b) If C is torsion-free and divisible, then for any group A , Hom(A , C) is torsion- 

free and divisible ([6,43(D)]. We apply [18,4.1.] once again.

c) If A©(7 has D.S.I.P., then, according to [10,3.4.1.], for any a E  Hon(A , (7), 

kera is a direct summand in A . Since A  is indecomposable, any morphism a : A C 

is either null or injective. Let 0 ^  /? E  Hom(AyC ) be a morphism for which n/3 =  0, 

for a certain n E  N*. Then for any a E  A, n(3(a) =  /3(na) =  0. So na = 0, as (3 is 

injective. Since A  is torsion-free, it follows that n =  0 - contradiction with the choice 

of n. So Hom(A,C) is torsion-free. Now we are going to demonstrate that Hom(A,C) 

is divisible. Since the group C is divisible, it follows that for any a E  Hom(A1C)1 with 

any x € A  and any n € N*, there is y E C so that a{x) =  uy.

We define 7 : A  -* C by: for any x E  A, y(x) =  2/, where y E  C is the solution 

of equation a(x) =  ut. Then 7 E  Hom{A,C) and a(x) =  n j(x )y for any x E  A. So 

Hom(A,C) is divisible. Now [18,4.1.] completes the proof.

d) Let A  be a torsion-free group with D.S.I.P. and C torsion-free of rank 1. Then

A = D ® £7, with D - divisible and E  - reduced, completely decomposable homogeneous 

of finite rank ([18,5.16.]). So there is an n E  N  so that E  =  where B  is reduced
n

torsion-free of rank 1. Then there will be Hom(A , C) =  Hom(D(BE, (7) ^  Hom(D , (7) © 

Hom(Ey C) — /fom(23, (7) © ( < H )  “  Hom(D, O) ® ^ 0  Hom(B, C ) j ,

according to [6.43.1., 43.2.]. The group Hom(DyC) has D.S.I.P., according to a). From 

[6,85.4.] we find that H om(ByC) is either 0 (if t(B) > t(C)) or a torsion-free group 

of rank 1 and of the type t(C) : £(̂ 4), (if t{A) < t{C)). If H om (By C) — 0, then 

Hom(A,C)i*& Hom{DyC) and the proof is ready for this case. If H om (ByC) ^  0, 

then ^ H o m ( B yC) is either torsion-free divisible or reduced homogeneous completely
n

decomposable group of finite rank. In the former case Hom(AyC) will be torsion-free 

divisible so it has D.S.I.P., and in the latter Hom(Ey (7) is reduced homogeneous com­

pletely decomposable group of finite rank having D.S.I.P., according to [12, Theorem 5.]. 

Now [18,5.12.] completes the proof.
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The proof from point e) will be similar to the one from point d).

2) If A and C are the same as in the statement, then Hom(Ay C) is according 

to [6,85.4.], torsion-free group of rank 1. Now we can apply [10, Proposition 3.4.].

Prom (3.3.)b) and [6,§43.] (or 18,4.1.]) will have:

C orollary 3.4. For any abelian group A and any m  € N*, the group Horn ( a 0 Q]

®  <3 has D.S.I.P..n
r0(>l)

For any abelian group A, the group of characters of A is Car A  =  Hom(A , Q/Z). 

From (3.3.a) we find that if A  is torsion-free and divisible, then Car A  has D.S.I.P.. The 

next theorem will improve this result.

T heorem  3.5. I f A  is a torsion-free group with D.S.I.P., then Car A has the 
same property.

Proof. Let A be a torsion-free group with D.S.I.P.. According to [18,5.16.], 

, where m ,n € iV or m =  oo, and C  is reduced, of rank 1. 

Then according to [6,43.1., 43.2.],

Car A =  H om (A,Q /Z) — Horn ( ( © « )  ® ( © < ? )  . 0  z (p” >)

. to V /  V n p /
s  Horn

n n  Hom(Q,Z(p°°))
_ m p

© n n  H<m(C,Z(p°°))
L n p

According to [6,43.(G).], Hom(Q,Z(p°°)) is a torsion-free and divisible group. But then 

J J  J J  Hom(Q , Z(p°°)) is divisible and torsion-free too (see [6,20.(E).]). Since the jp-basic
n p

subgroup of C is null, according to [6,47.1], H om(C, Z(p°°)) is divisible and torsion-free; 

so the groups JJ JJ Hom{C^Z[p°°)) and Car A  have the same property. From [18,4.1.]
n p

it follows that, Car A  has D.S.I.P.. ê
Now, we are going to study the ring E(A) = EndA  and the group AutA , when 

A is a torsion free group with D.S.I.P..

T heorem  3.6. If A is torsion-free with D.S.I.P., then:

e w  -  (n (©«]) ® (© [©<?]) ® (© (©«"«■I).
\  m \  m  J /  \ n L n  J /  \  n \  n J /
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where:

- m and n are natural numbers or m  = oo;

- C is a reduced torsion-free group of rank 1.

Proof. Let A  =  D 0  B be, with D =  Q (divisible) and B =  0 C - re­
in n

duced completely decomposable homogeneous of finite rank (C being a reduced torsion- 
free group of rank 1), torsion-free group with D.S.I.P., according to [10,3.3.]. Then 

E(A) =  Hom(A , A) = H om (D ® B,D ® B) =  Hom(D,D)® Hom(D,B)® Hom(B,D)(B

Hom(B,B) = EndD®Hom(B,D)®EndB, according to [6.43.1,43.2., 43.(A).(iii).]. But

EndD = Horn [ 0  Q, 0  Q ) =
\  to m /  .to 0 Q , (see [6,§43.]), Hom(B,D ) =  Horn

J[Ham  C 7 ,0 Q 0  e? , and EndC  =  Horn
\  n n /  n

( ® c , © g )
\  n to /

. n
Making a demonstration analogous to (2.7.) we obtain: 

T heorem  3.7. If A is a torsion-free group with D.S.I.P., then:

AutA  “  ( J J 0 o-X® 0 o-
. n

We’ll close this paragraph with some other two condition necessary for a torsion- 

free group to have D.S.I.P..

T heorem  3.8. Let A be a torsion-free group. In any of the following cases, A 

has D.S.I.P..

(a) The group A has the following property: if A is an endomorphic image of a 

group B, then B  contains a direct summand isomorphic to A.

(b) There is a prime number p so that the p basic subgroup B  of A, is an endo­

morphic image of A and A /B  is divisible.

Proof, (a) If A  is like in the statement, then, according to [11, Theorem 1.], A = 

D©F, where D is divisible and F  - free. The groups D and F  from the decomposition of 

A have D.S.I.P., because of [18.4.1.] and respectively [18.2.2.]. Now [18, 5.12.] completes 

the proof.

(b) Let A  be a torsion-free group and B  = Bq 0  B\ 0  • • • 0  B n 0  . . .  its p-basic 
subgroup (J50 =  ©Z and B n =  0 Z(pn), n =  1 ,2 ,...) . This leads to the conclusion 

that B = 0 Z, so it is a free group. If /  € EndA  and f(A ) = B, then A /k e r f  “  B, 

according to the first theorem of isomorphism. Since B is a free group, is an exactly
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splitting sequence: O ->■ kerf -* A B  0 ([6,14.4.]). So A 9* k e r /® B  = D®C®B, 

where £> is the maximal divisible subgroup of A, and C is a reduced group. Since A/B 

is a divisible group it follows that (7 =  0. So A  =  D ® B, with divisible and C - free. 
Now we are going to judge the same as at point a).

4. M ixed groups

In [18,4.4.] we have seen that a divisible group with D.S.I.P. cannot be 

mixed. Because of this, according to what was demonstrated in the former paragraphs 

and in [6,§32,§106,§113, §127, §128], we find:

Theorem  4.1. Let A be a divisible group with D.S.I.P.

(a) I f A is a torsion group, then:

and

e (a ) ~ Y [ q ;,
V

Aut(A)
P

(b) If A  is a torsion-free group, then:

E(A) 3  MiPXTa(Q) -  J J
ro

© e
- r0 .

and

Aut(A)SUJ(M<r" n m ^ l l © < J -
ro ro

n
ro

®(z<2 >\*.z)
where the notations are the ones presented above.

Using (2.4.)-(2.8.), (3.6.)-(3.7.), (4.1.) and [18.6.4.], the problem of the determi­

nation of EndA  (AutA ), for a splitting mixed group A  with D.S.I.P., will be reduced to 

the determination of Hom(B, Z(pn))y where n € N* and B  is a reduced torsion-free of 

rank 1 direct summand of A.

The following results present sufficient conditions for T(A) and A /T(A ) (A being 

a mixed group), to have D.S.I.P., by using the ring E(A ).

P roposition  4.2. Let A  be a mixed group with the property that any endo­

morphic image of A  is a direct summand in A.

(a) If T(A) is bounded, then A , T(A) and A/T(A ) have D.S.I.P..

(b) If T(A) is not bounded, it may have D.S.I.P., A/T(A ) has (always) D.S.I.P., 

but A  does not have this property anymore.
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Proof. Let A  be a mixed group with the property presented in the statement. 

From [15,3.1., 4.2., 5.3], we find that each ^-component of A  is an elementary or divisible 

group, and A /T(A ) is divisible.

(a) If T(A) is bounded, then each p-component is a elementary p-group and has 

D.S.I.P., according to [18, 3.3.]. This means that T(A) is an elementary group and has 

D.S.I.P. ([12, Lemma 1 .]). The group A /T(A ) has D.S.I.P., due to [18, 4.1.]. According to 

the hypothesis A  it is splitting and as T(A) and A/T(A ) are, in this case, fully invariant, 
we can apply [12, Lemma 1.].

(b) If T(A) is not bounded, then it has a divisible direct summand. From [18,4.4.] 

we find that T(A) can have D.S.I.P., if it takes the form Z(p°°). In this case A  has
p

a mixed divisible direct summand and, according to [19, proposition 6.], doesn’t have 

D.S.I.P..

P roposition  4.3. Let A be a mixed group. In any of the following situations 

T{A) and A /T(A ) have D.S.I.P.:

(a) The kernels and the images of the endomorphisms of A  are pure subgroups

in A.

(b) The ring of the endomorphisms of A  is regular.

Proof, (a) If A  has the property given in the statement, according to [17,5. 

Proposition 3.], T(A) is elementary and A /T(A ) is divisible. Now [18,3.3.] and [18,4.1.] 

completes the proof.

(b) We suppose that E(A) is regular. If A  is not reduced, then, according to

[6,112.7], A is splitting, T(A) is elementary, and A /T(A ) is divisible. So A, T(A) and 

A/T(A) has D.S.I.P.. If A  is of torsion, then A = T(A) is an elementary group, so it 

has D.S.I.P.. Finally, if A is reduced, then, again, T(A) is elementary and A /T(A )  is 

divisible.

Corollary 4.4. Any splitting group which satisfies the conditions from (4-3.)(a) 

has D.S.I.P..

In the end we present other properties of the mixed groups with D.S.I.P.. 

T heorem  4.5. Let A be a splitting mixed group, with D.S.I.P. with T  — T(A) 

and f  - the completion o fT  in the Z-adic topology. Then:

a) for any divisible group G, E xt (G, T) is isomorphic to a direct summand of a 

direct product of groups of the form A /pnA ;
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b) T  is isomorphic to a direct summand of a direct product of groups of the form

A /pn A;

c) if C is a reduced torsion-free summand, of rank 1, from some decomposition 

of A, and (Ext(Q/Z,C))o  — 0, then the pure-injective hull o fT  and the first subgroup 

Ulm of the cotorsion hull o fT , are isomorphic to (Ext{Q/Z,A)o (so (E zt(Q /ZyA)o is 

a reduced algebraically compact group).

Proof, a) Ig A  is a splitting mixed group with D.S.I.P., according to [12, The­
orem 4], T l =  0. Prom [6,39.5] we find that: 0 -> T -» T —> T /T  0 is an exact 

sequence. Now [6,53.7.] implies the exactness of the sequence: 0 =  Hom(G, T) -¥ 

H om (G ,T/T) Pext{G,T) Pext(G ,T) =  0; the last equality occurs because T  is 

algebraically compact group ([6,39.1.]). This leads to H om (G ,T/T) =  Pext(G ,T) = 

(Ext(G> T))1. From [6,51.3.] we get exactness of the sequence: 0 =  Hom(G,T) 

Hom(Gyf / T )  -► Ext{G ,T) Ext(G ,T) ->• E xt(G ,T /T )  =  0 (the last equality oc­

curs because of [6,39.5.]). So Ext(G yT)/H om (G yf / T )  =  Ext(G ,T)/Pext{G ,T) = 

E xt(G /T )/(E xt(G ,T ))1 =  {Ext{G,T))0 “  Ext{G,T). Since A =  T  © A /T , it fol­

lows that (Ext(G yA))o =  (J?xi(G, T))o ® {Ext{G, A /T ))0 (see [6,37.5.]). So Ext(G ,T) is 

a direct summand in (Ext(G, A))o. According to [6,30.1.], there is a direct sum of cyclic

groups X  = ^^(#*) and an epimorphism 7] : X  -> G so that kerrj is a pure subgroup 
*€/

in X, that is, there is the following pure-exact sequence: 0 -» kerr) -> X  -¥ G -► 0. 

From [6,57.1.] it follows that (Ext(X,A))o  =  (Ext(GyA ))o © (Ext{kerrh A))0. But

(E xt(X ,A )) o =  Ext -  ( n ^ M ) )  -  ( n A/p nA

JJ A/pnA, according to [6,52.2,52.(D).,37.5.].
P

b) By [6,56.6.] it follows that f  ^  (Ext(Q /Z ,T))o, which is, see [6.57.1.], a 

direct summand in (Ext(Q/Z, A))o. Since Q /Z  is divisible, the statement follows from 

the proof of the point a) of this theorem.

c) Let A -  T  © D © ( r )  be a splitting mixed group, with D.S.I.P., ac­

cording to [18,6.4.] (so T  is the torsion part of A, D is a torsion-free divisible group, 

and C is a torsion-free reduced group, of rank 1). From the hypothesis and from 

[6,37.5.,56.6.,52.(B).] we find that (E xt(Q /ZyA))o =  (E xt(Q /Z ,T ))0 ^  T, which is a 

reduced algebraically compact group (see [6,39.1]). If f  is the pure-injective hull of T, 

from [6,41.9.] and [12, Theorem 4.], it follows that T  ^ T .
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Corollary 4.6. Let Abe a splitting mixed group with D.S.I.P. and B  its reduced 

homogeneous completely decomposable summand of finite rank, according to [18,6.4*], E  

the divisible hull and G the pure-injective hull o fB . IfH om (Q /Z , E /B ) ** Hom(Q/Z, G /B), 

then (Ext(Q/Z,A))o is a reduced algebraically compact group.

Proof. Prom [6,52.3.] we find that E xt(Q /Z ,B ) ^  H om (Q /Z ,E fB ). If G is 

the pure-injective hull of B , then 0 I? G —> G /B  -> 0 is a pure-exact sequence. 

According to [6,53.7.]: 0 =  Hom{Q/Z,G) H om{Q/Z,G/B) -+ Pext{Q /Z,B) ->

• Pext(Q/Z,G) =  0 is an exact sequence; the two equalities are due to [6.43.(A).(iii).] and, 

respectively to [6,41.5.]. This means that Pext(Q /Z ,B ) ^  H om (Q /Z,G /B). Then, ac­

cording to the hypothesis and to [6*53.3.], we get: (Ext(Q /Z , J3))0 =  Ext{Q /Z , B)/Pext(Q /Z, B) 

H om (Q /Z,E/B)/H om (Q /Z,G /B) =  0. Now, (4.5.c) completes the proof.
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