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Abstract. Data dependence in case of the weakly Picard operators is given.

1. Introduction.

Let X be a nonempty set and f : X = X an operator. We will use the notation

F; ={z € X | f(z) = z}, the fixed points set of f;

Of (z;n) = {z, f (=), fz(x)’ S fn(w)}
04 (z) = {z, f(z), f*(z), ..., f*(2), ...}, the orbit of z € X;

P(X)={ACX|A#0}.
For a metric space (X,d) we have
0(A) = sup{d(a,b) | a,b € A}, the diameter of A € P(X);
P, i(X) ={A € P(X)| A is bounded and closed };
H:Pyo(X)xPya(X)— Ry, H(A,B) = ma.x(s‘}g’)4 gglfa d(a, b),s;xe% ;IEIS d(a, b)),
the Hausdorff- Pompeiu distance on Py (X)) set.
H : Py(X) x Py(X) = Ry U {+oo} - the generalized
Hausdorff - Ponipeiu distance.
C(X)={f:X - X | f is continous operators }
Let ¢ : Ry = R4 be a function.

Definition 1. ¢ is a strict comparison function if ¢ satisfies the following:

i) g is continous;
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i) p is monotone increasing ;

i#t) " () =300, for allt > 0;

i) t — o(t) 3030;

Let (X,d) be a metric space and f : X — X an operator.

Definition 2. The operator f is called weakly Picard if the sequence (f™(z))n>1 con-
verges for all z € X to a fized point of f, which will be denote by f=(z).

For more details about the weakly Picard operators see [2], (3] [4].

Definition 3. The operator f is called a strict p— contraction if :
i) @ 13 a strict comparison function;
i) d(f(z), f(y)) < p(d(z,y)), for all 2,y € X.

About the strict ¢ - contractions we have the next

Theorem 1. Let (X,d) be a metric space, f : X — X a strict ¢ - contraction and
z € X. Then

i) d(fi(z), f1(z)) < p(6(0O¢(z;n))), for all i,j € {1,2,...,n} withi < j;

i) for each n € N ezists p € N, such that §(O¢(z;n)) = d(z, fP(z));

i11) 8(0¢(z;n)) < Ty(s,f(a)) for eachn €N,

where Ty(z,1(z)) = sup{t | t — p(t) < d(z, f(z))};

For more details and results see [1],[2].

The aim of this paper is to give an answer to the following

PROBLEM ”Let (X, d), be a metric space and f,g: X = X two weakly Picard

operators.If exists n > 0 such that d(f(z),g(z)) < n, for any z € X, estimate the

"distance’ between Fy and F,.”

2. Main results.

Lemma 2. Let (X,d) be a metric space and f,g : X = X two weakly Picard opera-
tors. Then H(Fy, F,) < max(supd(z, f*(z)), sup d(z,g*>(x)))-
zeF, zEFy
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Proof. We remark that f*°(z) € Fy and g*°(z) € F,. The proof follows from the defini-
tion of H."

Theorem 3. Let (X,d) be a complete metric space, ¢ : Ry = Ry a strict comparison
function and f,g: X = X two orbitaly continous operators. We suppose that:

i) d(f(2), *(2)) < ¢(d(=, f(2)), for any z € X and

d(g(z), 9*(z)) < p(d(z,g(x)), for any z € X;

i) there exists n > 0 such that d(f(z), g(z)) <, for any z € X.

Then:

a) f and g are weakly Picard operators;

b) H(Fy,Fy) < T, where 7, = sup{t | £ — p(t) < n}.

Proof. a) Let z € X and i, € N with ¢ < j.

We have d(f*(z), f7(z)) < p(d(f*~"(2), fi7}(z))) <

o S Az, f17(2)) < *(8(0f(x; 5 — 1)) < @' (Tagz.1(a)))-

Finaly, if we put ¢ =n, j = n + p, we obtain

d(f™(z), fMP(2)) < O™ (Ta(z,1(z)) —3 0.

Hence (f™(z))nen is a Cauchy sequence and f°°(z) will be the limit of it. Because
f is orbitaly continous then f>(z) € Fy.

In the inequality d(f™(z), f**?(z)) < ¢"™(Ta(z,1(2))) if we take ,;1320 we obtain
that d(f"(z), foo(x)) < ‘P”(Td(z,f(z)))a for anyneN.

Similarly, for any z € X, we have the convergence of (g"(z))nen and g*®°(z), the
limit of this sequence, has two properties:

goo(m) € Fy and d(gn(x)’ gco(z)) < (Pn(rd(z,g(z)))i foranyn€N.

b) From the estimation d(f"(z), f°(z)) < ¢™(Td(z,1(=))), Which is true for any
z€ X and n € N, we obtain for n = 0,that d(z, f*°(z)) < Ta(z,f(z)) (*)-

By a similar argument we have that d(z, §°(¢)) < T(z,g¢z)) (**)

From (*), (**) and ii) it follows

d(z, f*(z)) < 7y, for any z € F, and

d(z,9%°(z)) < Ty, for any z € Fy ,

we apply Lemma 2.1. }

As a consequence of the Theorem 2.2 we have

81



IOAN A. RUS AND SORIN MURESAN

Theorem 4. Let (X,d) be a complete metric space, ¢ : Ry — Ry a strict comparison
Junction and fp,,f : X — X,n € N orbitaly continous operators.

We suppose that:

i) d(f(2), 2(@)) < p(d(z, f(z)), for any = € X;

i) d(fa (), f2(2)) < @(d(z, fn(2)), for anyz € X andn €N

#5) (fr)nen converges uniformly to f.

Then

a) f and f,, n € N, are weakly Picard operators;

b) H(Fy,,Fy) =% 0;
Remark 1. ,If we take ¢(t) = at, with a € [0,1], from the Theorem 2.2 we have

Theorem 5. Let (X,d) be a complete metric space and f,g : X — X two orbitely
continous operators. We suppose that

i) d(f(2), £ (z)) < ad(z, f(2)), for any = € X and

d(g*(2), 9(2)) < ad(z,g(z)), for any z € X;

i) there exists 1) > 0 such that d(f(x), 9(z)) < 0, for any z € X.

Then H(Fy,Fy) < 1. ’

3. Applications.

Let K1, K2 € C([a,b] x [a,b] x R). We consider the following integral equations

with deviating argument:

z(t) = z(a) + }Kl (t,8,z(8))ds, t € [a,b] (1)

b
z(t) = z(a) + [Ka(t, 3,2(s))ds, t € [a, ] (2)
By the theorer:l 2.3 we have

Theorem 6. We suppose that:
i) K;(a,s,u) =0, for any z € [a,b], s,u € R; (i=1,2)
14) there exists n > 0 such that
| Ki(t,8,u) — Ka(t,8,u) |[<n, for allt,s € [a,b] and u € R;
iii) there exists L > 0 such that
| K@, 8,u) -~ K(t,8,v) |< L|u—v|, for all t,s € [a,b] and
wv€eER, (i=1,2)
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iw)Lb—a)<;
Let Sk, be the solutions set of the equations (i) in Cla,b] such that
z(a) € [a,0] (i=1,2).
Then
a) Sk, #9,i=1,2;
b) Hj;(Sk;,Sk,) < ﬂlb_;z%%”)ﬂ, where by H), we denote the Hausdorff -

Pompeiu metric with respect to Cebyshev norm on Cla, b].

Proof. We consider the operators f, g : Cla, b] = C|a, b] defined by
b
f(z)(t) = z(a) + [K1(t; 8,%(s))ds and

9(z)(t) = z(a) + }Kz(t, 8,x(s))ds.
It is clear that we have ’
1f(2) - (@) < L(b — a)llz — f(z)||, for all z € C[a, 3],
llg(x) — g* @)l < L(b - a)llz — g(z)||, for all z € C[a, b]
and
If(z) —g@I <B-a+(b—a)m,
we apply now the theorem 2.3. §
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