DATA DEPENDENCE OF THE FIXED POINTS SET OF WEAKLY PICARD OPERATORS

IOAN A. RUS AND SORIN MURESAN

Dedicated to Professor Ioan Purdea at his 60th anniversary

Abstract. Data dependence in case of the weakly Picard operators is given.

1. Introduction.

Let X be a nonempty set and $f: X \to X$ an operator. We will use the notation

 $F_f = \{x \in X \mid f(x) = x\}$, the fixed points set of f;

$$O_f(x;n) = \{x, f(x), f^2(x), ..., f^n(x)\}$$

$$O_f(x) = \{x, f(x), f^2(x), ..., f^n(x), ...\}, \text{ the orbit of } x \in X;$$

$$P(X) = \{A \subseteq X \mid A \neq \emptyset\}.$$

For a metric space (X, d) we have

 $\delta(A) = \sup\{d(a,b) \mid a, b \in A\}, \text{ the diameter of } A \in P(X);$

 $P_{b,cl}(X) = \{A \in P(X) \mid A \text{ is bounded and closed }\};$

 $H: P_{b,cl}(X) \times P_{b,cl}(X) \to \mathbb{R}_+, H(A,B) = \max(\sup_{a \in A} \inf_{b \in B} d(a,b), \sup_{b \in B} \inf_{a \in A} d(a,b)),$ the Hausdorff- Pompeiu distance on $P_{b,cl}(X)$ set.

 $H: P_{cl}(X) \times P_{cl}(X) \to \mathbb{R}_+ \cup \{+\infty\}$ - the generalized

Hausdorff - Pompeiu distance.

 $C(X) = \{f : X \to X \mid f \text{ is continous operators } \}$

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a function.

Definition 1. φ is a strict comparison function if φ satisfies the following:

i) φ is continous;

¹⁹⁹¹ Mathematics Subject Classification. 47H10; 45G.

Key words and phrases. weakly Picard operator, strict comparison function.

ii) φ is monotone increasing;

iii)
$$\varphi^n(t) \xrightarrow{n \to \infty} 0$$
, for all $t > 0$;

iv)
$$t - \varphi(t) \xrightarrow{t \to \infty} \infty;$$

Let (X, d) be a metric space and $f: X \to X$ an operator.

Definition 2. The operator f is called weakly Picard if the sequence $(f^n(x))_{n\geq 1}$ converges for all $x \in X$ to a fixed point of f, which will be denote by $f^{\infty}(x)$.

For more details about the weakly Picard operators see [2], [3] [4].

Definition 3. The operator f is called a strict φ - contraction if: i) φ is a strict comparison function; ii) $d(f(x), f(y)) \leq \varphi(d(x, y))$, for all $x, y \in X$.

About the strict φ - contractions we have the next

Theorem 1. Let (X,d) be a metric space, $f : X \to X$ a strict φ - contraction and $x \in X$. Then

 $\begin{array}{l} i) \ d(f^{i}(x), f^{j}(x)) \leq \varphi(\delta(O_{f}(x;n))), \ for \ all \ i, j \in \{1, 2, ..., n\} \ with \ i < j; \\ ii) \ for \ each \ n \in \mathbb{N} \ exists \ p \in \mathbb{N}, \ such \ that \ \delta(O_{f}(x;n)) = d(x, f^{p}(x)); \\ iii) \ \delta(O_{f}(x;n)) \leq \tau_{d(x,f(x))} \ for \ each \ n \in \mathbb{N} \ , \\ where \ \tau_{d(x,f(x))} = \sup\{t \mid t - \varphi(t) \leq d(x, f(x))\}; \end{array}$

For more details and results see [1], [2].

The aim of this paper is to give an answer to the following

PROBLEM "Let (X, d), be a metric space and $f, g: X \to X$ two weakly Picard operators. If exists $\eta > 0$ such that $d(f(x), g(x)) \leq \eta$, for any $x \in X$, estimate the "distance" between F_f and F_g ."

2. Main results.

Lemma 2. Let (X,d) be a metric space and $f,g: X \to X$ two weakly Picard operators. Then $H(F_f, F_g) \leq \max(\sup_{x \in F_g} d(x, f^{\infty}(x)), \sup_{x \in F_f} d(x, g^{\infty}(x))).$

Proof. We remark that $f^{\infty}(x) \in F_f$ and $g^{\infty}(x) \in F_g$. The proof follows from the definition of H.

Theorem 3. Let (X, d) be a complete metric space, $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ a strict comparison function and $f, g : X \to X$ two orbitaly continuous operators. We suppose that:

i) d(f(x), f²(x)) ≤ φ(d(x, f(x)), for any x ∈ X and d(g(x), g²(x)) ≤ φ(d(x, g(x)), for any x ∈ X;
ii) there exists η > 0 such that d(f(x), g(x)) ≤ η, for any x ∈ X. Then:
a) f and g are weakly Picard operators;

b) $H(F_f, F_g) \leq \tau_{\eta}$, where $\tau_{\eta} = \sup\{t \mid t - \varphi(t) \leq \eta\}$.

Proof. a) Let $x \in X$ and $i, j \in \mathbb{N}$ with i < j. We have $d(f^i(x), f^j(x)) \leq \varphi(d(f^{i-1}(x), f^{j-1}(x))) \leq$ $\dots \leq \varphi^i(d(x, f^{j-i}(x)) \leq \varphi^i(\delta(O_f(x; j-i))) \leq \varphi^i(\tau_{d(x, f(x))})$. Finaly, if we put i = n, j = n + p, we obtain $d(f^n(x), f^{n+p}(x)) \leq \varphi^n(\tau_{d(x, f(x))}) \xrightarrow{n \to \infty} 0$.

Hence $(f^n(x))_{n \in \mathbb{N}}$ is a Cauchy sequence and $f^{\infty}(x)$ will be the limit of it. Because f is orbitally continuous then $f^{\infty}(x) \in F_f$.

In the inequality $d(f^n(x), f^{n+p}(x)) \leq \varphi^n(\tau_{d(x,f(x))})$ if we take $\lim_{p \to \infty}$ we obtain that $d(f^n(x), f^{\infty}(x)) \leq \varphi^n(\tau_{d(x,f(x))})$, for any $n \in \mathbb{N}$.

Similarly, for any $x \in X$, we have the convergence of $(g^n(x))_{n \in \mathbb{N}}$ and $g^{\infty}(x)$, the limit of this sequence, has two properties:

$$g^{\infty}(x) \in F_g$$
 and $d(g^n(x), g^{\infty}(x)) \leq \varphi^n(\tau_{d(x,g(x))})$, for any $n \in \mathbb{N}$.

b) From the estimation $d(f^n(x), f^{\infty}(x)) \leq \varphi^n(\tau_{d(x, f(x))})$, which is true for any $x \in X$ and $n \in \mathbb{N}$, we obtain for n = 0, that $d(x, f^{\infty}(x)) \leq \tau_{d(x, f(x))}$ (*).

By a similar argument we have that $d(x, g^{\infty}(x)) \leq \tau_{d(x,g(x))}$ (**)

From (*), (**) and ii) it follows

$$egin{aligned} d(x,f^\infty(x)) &\leq au_\eta, ext{ for any } x \in F_g ext{ and} \ &d(x,g^\infty(x)) \leq au_\eta, ext{ for any } x \in F_f \ , \end{aligned}$$

we apply Lemma 2.1.

As a consequence of the Theorem 2.2 we have

Theorem 4. Let (X, d) be a complete metric space, $\varphi : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ a strict comparison function and $f_n, f : X \longrightarrow X, n \in \mathbb{N}$ orbitaly continuous operators.

We suppose that: i) $d(f(x), f^2(x)) \leq \varphi(d(x, f(x)))$, for any $x \in X$; ii) $d(f_n(x), f_n^2(x)) \leq \varphi(d(x, f_n(x)))$, for any $x \in X$ and $n \in \mathbb{N}$; iii) $(f_n)_{n \in \mathbb{N}}$ converges uniformly to f. Then a) f and $f_n, n \in \mathbb{N}$, are weakly Picard operators; b) $H(F_{f_n}, F_f) \xrightarrow{n \to \infty} 0$;

Remark 1. If we take $\varphi(t) = at$, with $a \in [0, 1]$, from the Theorem 2.2 we have

Theorem 5. Let (X,d) be a complete metric space and $f,g: X \to X$ two orbitaly continous operators. We suppose that

i)
$$d(f^2(x), f(x)) \leq ad(x, f(x))$$
, for any $x \in X$ and
 $d(g^2(x), g(x)) \leq ad(x, g(x))$, for any $x \in X$;
ii) there exists $\eta > 0$ such that $d(f(x), g(x)) \leq \eta$, for any $x \in X$.
Then $H(F_f, F_g) \leq \frac{\eta}{1-a}$.

3. Applications.

Let $K_1, K_2 \in C([a, b] \times [a, b] \times \mathbb{R})$. We consider the following integral equations with deviating argument:

$$egin{aligned} x(t) &= x(a) + \int\limits_{a}^{b} K_1(t,s,x(s)) ds, \ t \in [a,b] \ (1) \ x(t) &= x(a) + \int\limits_{a}^{b} K_2(t,s,x(s)) ds, \ t \in [a,b] \ (2) \ & ext{By the theorem } 2.3 ext{ we have} \end{aligned}$$

Theorem 6. We suppose that:

i) $K_i(a, s, u) = 0$, for any $x \in [a, b]$, $s, u \in \mathbb{R}$; (i = 1, 2)

ii) there exists $\eta > 0$ such that

 $|K_1(t,s,u) - K_2(t,s,u)| \leq \eta$, for all $t, s \in [a,b]$ and $u \in \mathbb{R}$;

iii) there exists L > 0 such that

$$| K(t,s,u) - K(t,s,v) | \le L | u - v |$$
, for all $t,s \in [a,b]$ and $u,v \in \mathbb{R}$, ($i = 1, 2$)

iv) L(b-a) < 1;

Let S_{K_i} be the solutions set of the equations (i) in C[a, b] such that

$$x(a) \in [\alpha, \beta] \ (i = 1, 2).$$

Then

a) $S_{K_i} \neq \emptyset, i = 1, 2;$

b) $H_{\|.\|}(S_{K_1}, S_{K_2}) \leq \frac{\eta(b-a)+\beta-\alpha}{1-L(b-a)}$, where by $H_{\|.\|}$ we denote the Hausdorff -Pompeiu metric with respect to Cebyshev norm on C[a, b].

Proof. We consider the operators $f, g: C[a, b] \to C[a, b]$ defined by

$$f(x)(t) = x(a) + \int_{a}^{b} K_1(t, s, x(s)) ds ext{ and } g(x)(t) = x(a) + \int_{a}^{b} K_2(t, s, x(s)) ds.$$

It is clear that we have

$$\|f(x) - f^2(x)\| \le L(b-a)\|x - f(x)\|$$
, for all $x \in C[a, b]$,
 $\|g(x) - g^2(x)\| \le L(b-a)\|x - g(x)\|$, for all $x \in C[a, b]$

and

$$\|f(x) - g(x)\| \leq \beta - \alpha + (b-a)\eta,$$

we apply now the theorem 2.3. \blacksquare

References

- [1] Vasile Berinde, Contractii generalizate si aplicatii, Ed. CUB PRESS 22, Baia Mare, (1997).
- [2] Ioan A. Rus, Generalized contractions, "Babes-Bolyai" University, Faculty of Mathematics, Preprint Nr. 3(1983), 1-130.
- [3] Ioan A. Rus, Basic problems of the metric fixed point theory revisted, Studia Univ." Babes -Bolyai", 34(1989), Nr.2,61-69;36(1991), Nr.1,81-99.
- [4] Ioan A. Rus, Weakly Picard mappings, Coment. Math. Univ. Carolinae, 34,4(1993), 769-773.

"BABES -BOLYAI" UNIVERSITY, CLUJ- NAPOCA, MIHAIL KOGALNICEANU, NR.1 UNIVERSITY OF ORADEA, ARMATEI ROMANE, NR. 5