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Dedicated to Professor loan Purdea at his 6(fh anniversary

A bstract. The aim of this paper is to show that the characteristic property of 
the real-valued quasiconvex functions to have convex level sets can be naturally 
extended in the class of (T, fl)-quasiconvex functions, introduced by us in [5], 
which in particular contains the cone-quasiconvex vector-valued functions in 
the sense of Dinh The Luc [3].

1. Preliminaries

Quasiconvex functions play an important role in scalar and vector optimization, 

their characteristic property to have convex level sets being succesfully explored in order 

to derive optimality conditions or to study some topological properties of the efficient 

sets. Some fundamental properties concerning these topics can be found for instance in 

[2] or [3],

Our study here is based on the concept of (I\ fi)-quasiconvexity, introduced by 

us in [5] in order to describe some common properties of different classes of generalized 

quasiconvex functions in a unifying way.

For this aim we only need to endoved the domain of the (r, fi)-quasiconvex 

functions with an abstract convexity induced by a set-valued mapping T, and to consider 

a binary relation Q in the codomain. In the sequel we consider r  : E\ x Ex -> 2El and 

fi : E2 2^2, where Ex and are two arbitrary nonempty sets.

We recall that a subset X  of Ex is said to be T-convex [5] iff

T {x\ x2) C l ,  V a:1, x2 € X .
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Obviously, the concept of T-convexity permits an unifying treatement of those notions of 

generalized convexity in which the line segments determined by two points are replaced 

by a continuous arc or by a discret subset of the domain.

On the other hand, when the codomain E2 is not endoved with linear or topolog

ical structure, we shall need to replace the preordering induced by a pointed convex cone 

by an arbitrary binary relation ft. Throughout the paper, this relation will be identified 

with the set-valued mapping ft : E2 2 ^  defined by fly =  {y* € E2 | (y^y*) € ft}, V y G 

E2 . We shall also associate to ft the following relations: fl~ y =  {y' € E2 | y € fly'} and 

ftcy =  &  \ (ft»), V y e E 2.

Given a nonempty subset 7  o f ^  we denote by ftF =  U {Qy | y £ Y }  the first 

order section of Y  in the sense of J. Riguet [7] and by [ft]F  =  0 {ftj/ : y € Y }  the second 

order section of F , which is nowadays known as the polar set of F.

By means of composite polarities, S. Dolecki and Ch. Malivert [1] have intro

duced the cyrtological closure operator cIq-  : 2 ^  -»• 2 ^  defined by

c1q- F  =  [ft][ft~]F, V F C Ê 2 .

As we shall see, the concepts o f T-convexity and cyrtological closure are the key 

tools that we need to derive the main results of this work.

2. The characterization of the (T, ft)-quasiconvexity by means of dominant 

level sets

Let us now recall [5] the definition of the (T, ft)-quasiconvex functions:

Definition 2*1. Let X  C E\ be a nonempty and T-convex set. A function /  : X  -► E2 

is said to be (r, il)~quasiconvex on X  if

/ ( I V , s 2 * * * * *)) C d o - { / ( a 1) , / ( * » ) } ,  V a1,a* € X.

This definition calls for a few comments:

i) It is easy to see that /  is (I\ Q)-quasiconvex on X  if and only if 

V a1, a* e  X, V y € E*  / ( { a 1,a 8})  C Sly =» / ( r ( a \ z 2)) C Qy. ' (1)

ii) The terminology used in the above definition is relative; in fact, this definition 

concerns quasiconvexity as well as quasiconcavity, since we can interchange ft with ft” .
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For instance, if E\ and E2 are linear spaces and G is a convex cone in JÊ , then 

for T and fl defined by

l V , x 2) =  co-fx^x2}  =  { tx1 +  (1 — t)x21 t € [0,1]}, V a?1,®2 € Ex 

and

fty =  y - C ,  V y e

the (r, fl)-quasiconvexity coincides with the cone-quasiconvexity in the sense of Dinh 

The Luc [3, 4].

It is known that if the euclidean space E2 =  M" is partially ordered by the 

positive cone C  =  ţ ţ . then a vector-valued function /  =  ( / i , . . . , / n) • -X" Kn is 

(r, fl)-quasiconvex if and only if their scalar components f \, . . . ,  f n are quasiconvex in 

the usual sense. Obviously, if we replace C  by —C  then /  is (r, fi)-quasiconvex if and 

only if / 1 , . . . ,  f n are quasiconcave in the usual sense.

Definition 2.2. Let /  : X  -> 2% be a function defined on a nonempty subset X  of E\. 

Given y € £?2, the set

Lf (y) =  { x e X \  f{x)  € % }  (2)

is called the level set of /  corresponding to the level y.

The (T, fl)-quasiconvexity can be characterized by means of these level sets as

follows:

Proposition 2.1. If the function f  : X  E2 is defined on a nonempty and F-convex 

set X  C Ei, then the following assertions are equivalent: 

i) f  is -quasiconvex on X ;  

ii) L f(y) is a T-convex set, Vy 6 i?2-

Proof. The implication i) => ii) follows directly from the above definitions.

To prove the converse implication, let x x,x 2 € X  and y £ E<i be such that 

/ ( { x 1,^2}) C fly. Then x1, x2 e  Lf(y) and by ii) we obtain T ^ j X 2) C Lf(y), i.e. 

/ ( I V , x 2)) C fly. Using the relation (1), we conclude that /  is (r,fl)-quasiconvex on 

X. □

In what follows we shall refine this result by taking account of the following 

categories of level sets:
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D efinition 2.3. Let /  : X  -4 E2 be a function defined on a nonempty subset X  of E\ 
and let y € E2. We shall say that L /(y ) given by (2) is:

i) a dominant level set, if y € Clf(X );

ii) an attainable level set, if y G f {X) .

Obviously, if Cl is reflexive then every attainable level set is a dominant one.

R em ark 2.1. The above definition is motivated by the fact that real-valued quasiconvex 

functions have some special properties which cannot be extended in the general case of 

(T, (î)-quasiconvex functions without strong assumptions on their codomain. Indeed, a 

real-valued function /  : X  -> M is quasiconvex on a convex nonempty subset X  of a 

linear space if and only if all their attainable level sets are convex. As shown by Example 

3.2 this property fails to be true even in the case of cone-quasiconvex vector functions.

The following result show that we can although characterize the (T, ft)-quasiconvexity 

using only dominant level sets:

C orollary  2.1. Let X  C E\ be a nonempty and T-convex set. A function f  : X  -4 E2 
is (T, Cl)-quasiconvex on X  if and only if their dominant level sets are T-convex.

Proof. Follows immediately from Proposition 2.1, because for any point y € E2\Cl~ f (X )  \ 

the corresponding level set L /(y ) is empty. □

3. T he characterization o f  the (T, fi)-quasiconvexity by  means o f  attainable 

level sets

In order to obtain some characterizations of the (r, fî)-quasiconvex functions in 

terms of attainable level sets, the following preliminary result will be usefull:

Lem m a 3.1. Let f  : X  E2, where X  is a nonempty subset of E\. I f C l c E 2 x E2 is 

transitive, then the set-valued mapping Lf : E2 -+ 2E2 given by (2) is isotone, i.e.

L/(y 1) C L/(y2), V yi,y2 € #2, yi € fiy2.

Proof. Let yi, y2 € E2 such that yi e  Cly2 and let x € L /(y i)- Then, by definition of Lf 
we have f (x )  € Cly\ and therefore f (x)  € Clyi, since Cl is transitive. □

R em ark 3.1. The assumption on the transitivity of Cl in Lemma 3.1 is essential. This 

is illustrated by the following example:
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Example 3.1. Consider Ei =  E2 =  R2, T{xl ,x2) =  co{xl ,x2}, V x^x2 £ R2 and let 

SI be given by Sly =  y +  C, Vy E l 2, where C — R2 \ (R+)2. Obviously, C is a closed 

non convex cone and therefore the induced relation SI is reflexive but it is not transitive.

If /  : R2 -»  R2 is the identic function on R2, i.e. f (x)  =  x, V x € R2, it is easy 

to see that the mapping Lf is given by

Lf (y) =  {x  € R2 I x £ fty} =  y +  C, Vy £ R2

and it is not isotone. In fact, for y1 =  (0 ,1 ),y2 =  (1,0) and we have y1 £ Sly2, but 

y° =  (2, ! )  € Lf(y i )\L f (y2).

Proposition 3.1. Let X  be a nonempty and T-convex subset of Ei and f  : X  —► If

SI is a complete preordering in E2, i.e. (SI U Sl~)(y) =  E2, V y £ E2} then the following 

assertions are equivalent:

i) f  is (T,Sl)-quasiconvex on X ;  
ii) Lf(f (x) )  is r -convex, V x € X.

Proof. The implication i) => ii) is a simple consequence of Proposition 2.1.

To prove the converse implication, suppose that ii) is true and consider some 

arbitrary points y £ E2 and x x,x 2 £ Lf(y).  Since SI is a complete relation we can 

suppose, without loss of generality, that / ( x 1) £ Slf(x2). Moreover, SI being reflexive, we 

have x x,x 2 £ L f ( f ( x 2)) and therefore T(xl ,:x2) C L /( / ( x 2)) according to assumption 

ii).

On the other hand, we have / ( x 2) £ Sly. Since fi is transitive, by Lemma 3.1 we 

can conclude that L / ( / ( x 2)) C Lf(y)  and consequently T(x1,x 2) C Lf(y). The assertion 

i) follows than again from Proposition 2.1. □

Remark 3.2. Without the assumption on the completeness of SI, the implication ii) => 
i) in Proposition 3.1 fails to be true even in the class of cone-quasiconvex vector-valued 

functions, as shown by the following example:

Example 3.2. Consider E\ =  R, E2 — R2, T(x1,x 2) =  co-fx^x2}, V x^x2 £ R and 

Qy — y — C, Vy £ R2, where C — R2 . Remark that in this case SI is reflexive and 

transitive, but it is not complete in R2.

ON THE LEVEL SETS OF (E\ n)-Q U A SIC O N V E X FUNCTIONS
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It is easy to see that the function /  : X  =  [0,1] R2, defined by

{( x , l - s )  if x £ ]0 ,1] \ {1 /2 }

(1 /2 ,1 /2 ) if x =  0 

(0,1) if x =  1/2.

satisfies the condition ii) in Proposition 3.1, since for any point x £ X,  L/(f(x)) =  {a:} 

is a convex set, but /  is not (r, fi)-quasiconvex on X , because for y =  (3/4,3/4), the 

level set Lf(y)  =  {0 } U [1/4,3/4] \ {1/2} is not convex.

Theorem 3.1. Let X  cE\ be a nonempty and T-convex set and f  : X  -► 1%. If SI is a 
complete preordering in E2 then the following assertions are equivalent: 

i) f  is (r, fX)-quasiconvex on X ;

ii) The set-valued mapping L f o f  : X  2X is (r ,  D)-quasiconvex on X .

Proof. We first notice that statement ii) can be rewritten as follows:

Lf (f (T (x\x2))) C L f ( f ( { x 1,x2})), Vx\x2 € X. (3)

Indeed, by (1) the function Lf  o /  is (r, D)-quasiconvex on X  if and only if

V X1,* 2 € X , V Y e  2X , Y  d  Lf ( f ( { x l ,x2})) = * Y d Lf ( f (T (x\x2))).

Suppose now that /  is (r , fl)-quasiconvex on X  and consider two arbitrary points 

xx,x2 € X.  By the completeness of SI we can suppose, without loss of generality, that 

f ( x l ) € Slf(x2) i.e. x 1 e L f ( f ( x 2)). On the other hand, since SI is reflexive, we have also 

x2 € f (T(x1,x2)) £ Qf(x2) and hence r (x 1,®2) C Lf ( f (x2)) i.e. f {T(xx,x2)) C Slf(x2). 
Using the transitivity of fl we obtain

L f { m x \ ^ ) ) )  C LfUix2)) C L f { f ( { x \ x 2}))

and hence condition (3) is fulfilled.

Conversely, if Lf o f  is (r, D)-quasiconvex on X  then using Lemma 3.1 we con

clude that for any points y £ E2 and x l ,x2 £ Lf(y) we have

£ /( / (* * ) )  C L /fo ) , V i € {1 ,2 } .

On the other hand, the reflexivity of SI implies that T(x11x2) C L / ( / ( r ( x l , x2))) 

and using the assumption (3) we finally infer that T(x1,x 2) C Lf(y ), V y £ E 2, which 

means that /  is ( f ,  ft)-quasiconvex on X.  □
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Remark 3.3. Even if the implication ii) => i) in Theorem 3.1 is valid without the com

pleteness assumption on fî, this assumption cannot be dropped for the converse implica

tion, as we can see from the following example:

Example 3.3. Consider E\ =  R, X  =  [0,1] and let T and fî be given by

T(x\x2) =  [min{x1,x 2},m ax {x1,a:2}], VxL,x 2 € R and tty =  y -  M+, Vy £ M2.

It is easy to see that the function /  : X  -»  R2 defined by f (x) — (x, 1 — x), V x e  

X  is (r, fî)-quasiconvex on X  because /  has T-convex level sets:

{x }  if f {x)  e  tty 
0 if f (x)  € ttcy.

On the other hand, we can see that the function Lf  o /  is not (I\ D)-quasiconvex on X  
because for x1 =  0 and x2 =  1 we have

Lf (y) = !
Lf( f (T {x\x2))) =  L /( /( [0 ,l ] ) )  =  [0,1] £ L f ( f ( {x\x*}) )  = L f ({0, l } )  =  {0 ,1 }.
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