SUFFICIENT CONDITIONS FOR STARLIKENESS

PETRU T. MOCANU AND GHEORGHE OROS

Dedicated to Professor Ioan Purdea at his $60^{\text {th }}$ anniversary

Abstract. In this paper we will study a differential subordination of the form:

$$
\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)} \prec h(z)
$$

where $h(z)$ is an univalent function in the unit disc U and we will obtain sufficient conditions of starlikeness for a function $f(z)=z+a_{2} z^{2}+\ldots$ analytic in U.

We will obtain our results by using the differential subordination method developed in [1], [2] and [3].

1. Introduction and preliminaries

Let A denote the class of analytic functions in the unit disc $U=\{z,|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$.

Also, let $S^{*}=\left\{f \in A, \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in U\right\}$ be the class of starlike functions in U.

In [7] the authors considered the class of functions $f \in A$ which satisfy the condition:

$$
\begin{equation*}
\operatorname{Re}\left\{\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in U \tag{1}
\end{equation*}
$$

for $\quad \alpha \geq 0 \quad$ where $\frac{f(z)}{z} \neq 0, z \in U$.
In [4] and [7] different types of starlike functions were investigated.
In [5] condition (2) was replaced by:

$$
\begin{equation*}
\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)} \prec 1+\lambda z \tag{2}
\end{equation*}
$$

$$
\frac{f(z)}{z} \neq 0, z \in U, \text { where } \alpha>0 \text { and } \lambda>0
$$

In this paper we will consider a more general differential subordination of the form (1), where h is an univalent function in U.

We will need the following notions and lemmas to prove our main results.
If f and F are analytic functions in U,then we say that f is subordinate to F, written $f \prec F$, or $f(z) \prec F(z)$, if there is a function w analytic in U with $w(0)=0$ and $|w(z)|<1$ for $z \in U$ and if $f(z)=F(w(z)), z \in U$. If F is univalent then $f \prec F$ if and only if $f(0)=F(0)$ and $f(U) \subset F(U)$.

Lemma A.([1], [2], [3]) Let q be univalent in \bar{U} with $q^{\prime}(\zeta) \neq 0,|\zeta|=1, q(0)=a$ and let $p(z)=a+p_{1} z+\ldots$ be analytic in $U, p(z) \not \equiv a$. If $p \nprec q$ then there exist $z_{0} \in U, \zeta_{0} \in \partial U$ and $m \geq 1$ such that:
(i) $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$
(ii) $z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$.

The function $L(z, t), z \in U, t \geq 0$ is a subordination chain if $L(z, t)=a_{1}(t) z+$ $a_{2}(t) z^{2}+a_{3}(t) z^{3}+\ldots$ is analytic and univalent in U for any $t \geq 0$ and if $L\left(z, t_{1}\right) \prec L\left(z, t_{2}\right)$ when $0 \leq t_{1} \leq t_{2}$.

Lemma B. ([6]) The function $L(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\ldots$ with $a_{1}(t) \neq 0$ for $t \geq$ 0 and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$ is a subordination chain if and only if there are the constants $r \in(0,1]$ and $M>0$ such that:
(i) $L(z, t)$ is analytic in $|z|<r$ for any $t \geq 0$, locally absolute continuous in $t \geq 0$ for every $|z|<r$ and satisfies $|L(z, t)| \leq M\left|a_{1}(t)\right|$ for $|z|<r$ and $t \geq 0$.
(ii) there is a function $p(z, t)$ analytic in U for any $t \geq 0$ and measurable in $[0, \infty)$ for any $z \in U$ so that Re $p(z, t)>0$ for $z \in U, t \geq 0$ and

$$
\frac{\partial L(z, t)}{\partial t}=z \frac{\partial L(z, t)}{\partial z} p(z, t) \text { for }|z|<r \text { and for almost any } t \geq 0
$$

2. Main results

Theorem 1. Let the function:

$$
\begin{equation*}
h(z)=1+(2 \alpha+1) \mu z+\alpha \mu^{2} z^{2} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha>0 \quad \text { and } \quad 0<\mu \leq 1+\frac{1}{2 \alpha} \tag{4}
\end{equation*}
$$

If $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ is analytic in U and satisfies the condition:

$$
\begin{equation*}
\alpha z p^{\prime}(z)+\alpha p^{2}(z)+(1-\alpha) p(z) \prec h(z), \tag{5}
\end{equation*}
$$

then $p(z) \prec 1+\mu z$ and this result is sharp.
Proof. If we let $q(z)=1+\mu z, \mu>0$ and $\psi\left(p(z), z p^{\prime}(z)\right)=\alpha z p^{\prime}(z)+\alpha p^{2}(z)+(1-\alpha) p(z)$, then $\psi\left(q(z), z q^{\prime}(z)\right)=h(z)$.

We will show that $\psi\left(p(z), z p^{\prime}(z)\right) \prec h(z)$ implies $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

If we let $L(z, t)=\psi\left(q(z),(1+t) z q^{\prime}(z)\right)=1+(\alpha t+2 \alpha+1) \mu z+2 \alpha \mu^{2} z^{2}$, then it is easy to show that:

$$
\begin{gathered}
\frac{z \frac{\partial}{\partial z} L(z, t)}{\frac{\partial}{\partial t} L(z, t)}=\frac{1}{\alpha}[(\alpha t+2 \alpha+1)+2 \alpha \mu z],|z|<1, \quad \text { and } \\
\operatorname{Re} \frac{z \frac{\partial}{\partial z} L(z, t)}{\frac{\partial}{\partial t} L(z, t)}=\operatorname{Re} \frac{1}{\alpha}(\alpha t+2 \alpha+1+2 \alpha \mu z) \geq \frac{1}{\alpha}(\alpha t+2 \alpha+1-2 \alpha \mu)
\end{gathered}
$$

Using now the condition (5) we obtain :

$$
\operatorname{Re} \frac{z \frac{\partial}{\partial z} L(z, t)}{\frac{\partial}{\partial t} L(z, t)} \geq \frac{1}{\alpha}\left[\alpha t+2 \alpha+1-2 \alpha\left(1+\frac{1}{2 \alpha}\right)\right]=\frac{1}{\alpha}(\alpha t)=t \geq 0
$$

Hence $\operatorname{Re} \frac{z \frac{\partial}{\partial z} L(z, t)}{\frac{\partial}{\partial t} L(z, t)} \geq 0$, and by Lemma B we deduce that $L(z, t)$ is a
subordination chain.
In particular, for $t=0$ we have $L(z, 0)=h(z) \prec L(z, t)$, for $t \geq 0$.
If we suppose that $p(z)$, is not subordonate to $q(z)$, then by Lemma A there exist $z_{0} \in U, \zeta_{0} \in \partial U$ such that $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$ with $\left|\zeta_{0}\right|=1$, and $z_{0} p^{\prime}\left(z_{0}\right)=(1+t) \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$, with $t \geq 0$.

Therefore $\psi_{0}=\psi\left(p\left(z_{0}\right), z_{0} p^{\prime}\left(z_{0}\right)\right)=\psi\left(q\left(\zeta_{0}\right),(1+t) \zeta_{0} q^{\prime}\left(\zeta_{0}\right)\right)=L\left(\zeta_{0}, t\right), t \geq 0$.

Since $h\left(z_{0}\right)=L\left(z_{0}, 0\right)$ we deduce that $\psi_{0} \notin h(U)$, which contradicts condition (6). Hence $p(z) \prec q(z)$ and since $\psi\left(q(z), z q^{\prime}(z)\right)=h(z)$ we deduce that q is the best dominant.

Corollary 1. If $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ is analytic in U and satisfies the condition: $\alpha z p^{\prime}(z)+\alpha p^{2}(z)+(1-\alpha) p(z) \prec 1+\lambda z$, where $\lambda=\mu(2 \alpha+1-\alpha \mu)$ and $\quad 0<\mu \leq\left(1+\frac{1}{2 \alpha}\right), \quad$ then $\quad p(z) \prec 1+\mu z$.

Proof. For $|z|=1$ from (5) we deduce $|h(z)-1|=\mu|2 \alpha+1+\alpha \mu z| \geq \mu(2 \alpha+1-\alpha \mu)$. If we put $\lambda=\mu(2 \alpha+1-\alpha \mu)$ we obtain $1+\lambda z \prec h(z)$ and from Theorem 1 we deduce that $p(z) \prec 1+\mu z$.

If we put $p=\frac{z f^{\prime}}{f}$, where $f \in A$ then Theorem 1 can be written in the following equivalent form.

Theorem 2. Let $h(z)=1+(2 \alpha+1) \mu z+\alpha \mu^{2} z^{2}$, where $\alpha>0,0<\mu \leq\left(1+\frac{1}{2 \alpha}\right)$. Let $f \in A$, with $\frac{f(z)}{z} \neq 0$, satisfy the condition:

$$
\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)} \prec h(z)
$$

Then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\mu z
$$

and $1+\mu z$ is the best dominant.
Corollary 2. Let $f \in A$, with $\frac{f(z)}{z} \neq 0$, satisfy the condition:

$$
\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)} \prec 1+\lambda z
$$

where $\lambda=\mu(2 \alpha+1-\alpha \mu)$ and $0<\mu \leq\left(1+\frac{1}{2 \alpha}\right)$.
Then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\mu z
$$

3. Particular cases

I. If $\alpha=1$, then $0<\mu \leq \frac{3}{2}$.
a). If we take $\mu=1$ then $\lambda=2$ and from Corollary 2 we obtain:

If $f \in A$ satisfies the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)-1\right|<2 \text { then }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1
$$

This result was obtained in [5].
b) If we take $\mu=\frac{1}{2}$ then $\lambda=\frac{5}{4}$ and from Corollary 2 we obtain the following condition for starlikeness. If $f \in A$ statisfies the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)-1\right|<\frac{5}{4} \text { then }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{1}{2}
$$

c) If we take $\mu=\frac{2}{3}$ then $\lambda=\frac{9}{4}$ and from Corollary 2 we deduce:

If $f \in A$ statisfies the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)-1\right|<\frac{9}{4} \text { then }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{3}{2}
$$

II. If $\alpha=2$, then $0<\mu \leq \frac{5}{4}$.
a). If we take $\mu=1$ then $\lambda=\mu(2 \lambda+1-\lambda \mu)=3$ and from Corollary 2 we deduce:

If $f \in A$ satisfies the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\left(2 \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)-1\right|<3 \text { then }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1
$$

b) If $\mu=\frac{1}{4}$ then $\lambda=\frac{9}{8}$ and from Corollary 2 we deduce: If $f \in A$, statisfies the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\left(2 \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)-1\right|<\frac{9}{8} \text { then }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{1}{4}
$$

c) If $\mu=\frac{5}{4}$, then $\lambda=\frac{25}{8}$ and from Corollary 2 we deduce:

If $f \in A$, statisfies the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\left(2 \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)-1\right|<\frac{25}{8} \text { then }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{5}{4}
$$

d) If $\mu=\frac{1}{2}$, then $\lambda=2$ and from Corollary 2 we deduce:

If $f \in A$, statisfies the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\left(2 \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)-1\right|<2 \text { then }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{1}{2}
$$

References

[1] S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex plane, I. of Math. Anal. Appl. 65 2(1978), 289-305.
[2] S. S. Miller, and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. I. 28(1981), 157-171.
[3] S. S. Miller, P. T. Mocanu, The theory and applications of second-order differential subordinations, Studia, Univ., Babes-Bolyai, Math., 34, 4(1989), 3-33.
[4] M. Nunokawa, S. Owa, S. K. Lee, M. Obradović, Suficient conditions for starlikeness, Chinese, J. Math. 24(3) 1996, 256-271.
[5] M. Obradović, S. B. Joshi and I. Iovanovic, On certain sufficient conditions for starlikeness and convexity (preprint).
[6] Ch. Pommerenke, Univalent Function, Vandenhoeck Ruprecht in Götingen 1975.
[7] C. Ramesha, S. Kumar, K. S. Padamanabham, A Suficient condition for starlikeness, Chinese J. Math. 23(1995) no. 2 167-171.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

University of Oradea, Department of Mathematics, 3700 Oradea, Romania

