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A GENERALIZATION OF SOME OF ORE’S THEOREMS
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Dedicated to Professor loan Purdea at his 60th anniversary

A b strac t. The paper completes the results from [2] with new properties of 

finite 7T-solvable primitive groups, where 7r is an arbitrary set of primes. Thus 

we obtain a generalization for 7r-solvable groups of some of O RE’s theorems 

from [5] given for solvable groups and being of special interest in the formation 

theory.

1. Preliminaries

All groups considered in the paper are finite. We shall denote by n an arbitrary 

set of primes and by irf the complement to n in the set of all primes.

Definition 1.1. a) Let G be a group, M and N two norma; subgroups of G such that 

N Ç M. The factor M /N is called a chief factor of G if M /N is a minimal normal 

subgroup of G/N.

b) A group G is said to be tt-solvable if every chief factor of G is either a solvable 

7r-group or a 7i7-group. Particularly, for n the set of all primes we obtain the notion of 

solvable group.

Definition 1.2. a) Let G be a group and W a subgroup of G. We define

careoW =  n {W '/g  £ G},

where W9 — g~xWg.

b) W is a stabilizer of G if W is a maximal subgroup of G and careoW — 1.

c) A group G is primitive if there is a stabilizer W of G.

The following results will be used to prove the main theorems of this paper. 

Theorem 1.3. ([1]) Any solvable minimal normal subgroup of a finite group is abelian.
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Theorem 1.4 (Schur-Zassenhaus) ([3], p.16) Let G be a finite group and H a normé, 

abelian subgroup of G such that |G : H | and \H\ are relatively prime. Then:

(a) H has a complement K  in G, i.e. H K  =  G and H fl K  =  1;

(b) all complements of H in G are conjugate under H. ;

Theorem 1.5. ([4], p.18) If G is a group and MyM\ are two normal subgroups of g \ 

such that M flM i =  1, then M and Mi commute elementwise, i.e. mm\ = m \m  for any 

ni £ M and mi € M i.

Theorem 1.6. (Dedekind identity) ([4], p.8) If G is a group and A ,B ,C  are subgroups 

of G such that A Ç C  Ç AB, then

C =  {A B )n C  =  A (B nC ).

Theorem 1.7. ([2]) Let G be a primitive group and W a stabilizer of G . Then:

(i) for any normal subgroup K  / I  of G we have KW =  G;

(ii) for any minimal normal subgroup M of G we have MW =  G;

(in) there is not a normal subgroup K  ^ 1  of G such that K  Ç W.

2. Frattini argument for 7r-solvable groups

In [4], p.35, 7.8. the following well-known theorem called the ’’Frattini argument” 

is given: Let G be a group, N  a normal subgroup of G and P  a Sylow p-subgroup of N. 

Then G =  NNq(P).

Our later considerations need a new form of the Frattini argument which we give

below.

We remind that a subgroup H of a group G is called a Hall n-subgroup of G if 

I#I is a 7r-number and |G : H | is a 7r/-number. We also remind the Hall-Cunihin theorem: 

Theorem 2.1. (Hall-Cunihin, [4], p.660) If G is a ir-solvable group, then:

(a) G has Hall ir-subgroups and Hall nf-subgroups;

(b) all Hall it-subgroups of G are conjugate in G; all Hall irf -subgroups of G are 

conjugate in G .

Theorem 2.2. (The Frattini argument for 7r-solvable groups) Let G be a tt-solvable 

group, N a normal subgroup of G and P  a Hall ir-subgroup (or a Hall irt-subgroup) of 

N. Then G =  NNG(P).
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Proof. Clearly NNG(P) Ç G. Let now g € G. Then P 9 Ç N 9 =  N, hence P 9 is also a 

Hall 7r-subgroup (or a Hall 7r/-subgroup) of N. But AT, as a subgroup of the 7r-solvable 

group G, is a 7r-solvable group too. Thus, applying 2.1, P  and P 9 are conjugate in N . 

It follows that P 9 =  P n, where n € N. This implies gn~x G NG(P). Then

" g =  (gn~l )n € Ng (P)N =  NNq(P).

This proves that G Ç NNG(P), hence G =  NNG(P). □

3. A generalization of some of O R E ’s theorems

Given in [5] for solvable groups, the so-called ORE’s theorems are of special 

interest in the formation theory. Here we establish a generalization for 7r-solvable groups 

of some of ORE’s theorems, where it is an arbitrary set of primes. Particularly, for 7r the 

set of all primes, we obtain ORE’s theorems.

In [2] we proved the following results similar to some of ORE’s:

Theorem 3.1. Let G be a primitive it-solvable group. If G has a minimal normal 

subgroup which is a solvable it-group, then G has one and only one minimal normal 

subgroup.

Corollary 3.2. If G is a primitive it-solvable group, then G has at most one minimal 

normal subgroup which is a solvable it-group.

Corollary 3.3. If a primitive it-solvable group G has a minimal normal subgroup which 

is a solvable it-group, then G has no minimal normal subgroups which are itf-groups. 

Theorem 3.4. If G is a primitive it-solvable group and N is a minimal normal subgroup 

of G which is a solvable it-group, then CG(N) =  N.

The first result of this paper examines the converse of 3.4:

Theorem 3.5. Let G be a it-solvable group such that:

(i) there is a minimal subgroup M of G which is a solvable it-group and CG(M) =  

M;

(ii) there is a minimal normal subgroup L/M  of G/M such that L/M  is a itf- 

group. Then G is primitive.

Proof. Suppose M =  G. Then G/M  =  1, hence L/M  =  1 giving a contradiction. Thus 

M ^  G. Further, by 1.3 M is abelian.
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By (ii) \L/M\ is a 7r/-number and by (I) |M| is a 7r-number. It follows that; 

(|L/M|, |M|) =  1. Applying now theorem 1,4, we conclude that M has a complement Lq 

in L, i.e. M L0 =  L and M fl L0 =  1.

Put W =  Nq (Lo). We shall prove that W is a stabilizer of G, i.e. W is a 

maximal subgroup of G and coreGW =  1.

Indeed, W ^  G, for otherwise JVo(Lo) =  G and hence Lo < G . So M and Lq are 

two normal subgroups of G such that M dLq -  1. By 1.5 M and Lq commute elementwise. 

Hence L 0 Ç CG(M) =  M. Thus L — ML0 =  M and L/M  — 1 contradicting (ii).

We note that MW =  G and MflWr =  l. Indeed, applying 2.2 to the 7r-solvable 

group G, L <  G and Lo a Hall 7r/-subgroup of L (since L0 ~  Lo/l =  L0/M  f l io  -  

M Lq/M  =  L /M  is a 7r/-group and |L : L0| =  |MLo : L0\ — \M : M n L0| =  \M\ is a 

7r-number), we obtain:

G =  LNg (Lq) =  M L0Ng (L0) =  MNg {L0) =  MW.

To prove that MPI W =  1, let us first show that M fl W <  G. Let g e G  =  MW, 

<7 =  mitt;, with mi G M, w € W and let m € M fl W. Then

g~1mg =  (miu;)“ 1m(mity) =  v” 1(m f1mmi)u;, 

where G M D W since M n W i s  normal in the abelian group M, and

w-1 (m ^m m ijw  G M D W

since MnW is normal in W. Hence g~1mg G MflW. Now from MnW <  G, MnW Ç M 

and M minimal normal subgroup of G it follows that M f l W  =  l o r M n W  =  M. The 

last condition is impossible because it implies that M Ç W  and hence the contradiction 

G =  MW =  W. S o M f l W - 1 .

To prove that W is a maximal subgroup of G, we remind that W ^  G and 

let us show that W <  W* <  G imply W =  W*. Suppose that W <  W*. Let w* G 

W* \  W C G =  MW. It follows that w* =  mw, with m G M and w G W. Hence 

m =  uPw-1 G M H W*. But G =  MW Ç MW* G G imply G =  MW*. Hence 

M n W* =  1 (proof like the above M OW  =  1). Thus m =  1 and w* =  w G W, a 

contradiction. Then W =  W*.

Finally, we prove that coreG W =  1. Since MCicoreG W <  G, M n coreG W Ç M, 

Mf)coreGW ^  M (for otherwise M Ç coreGW and so the contradiction G =  MW =  W) 
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and M being a minimal normal subgroup of G we have M DcoreoW =  1. By 1.5 M and 

careoW commute elementwise. It follows that corecW C  C g {M ) =  M which implies 

coreoW = M f l careoW = 1. □

The following two theorems generalize some of ORE’s theorems.
t

Theorem 3.6. If G is a n-solvable group satisfying (i) and (ii) from 3.5, then ant two 

stabilizers W\ and W<i of G are conjugate in G.

Proof By 3.5 G is primitive. Like in the proof of theorem 3.5 we note that M /  G and 

M is abelian. By 3.1 M is the only minimal normal subgroup of G.

Let W =  Ng (Lq) be the stabilizer of G given in the proof of theorem 3.5. Hence 

ML0 =  L and M n L0 =  1. We also know that MW — G and M n W =  1.

We shall prove that W and W\ are conjugate in G, and that W and W2 are 

conjugate in G. It follows that W\ and W2 are conjugate in G. It is enough to prove for 

W and Wi, the proof for W and W2 being similar.

Put Li — W\ PlL. Let us show that L0 =  Wf)L. First we note that L0 Ç MLq =  

L, L0 Ç Ng (L0) =  W hence L0 ÇW  HL. Conversely, if x G W D L =  Ng (L0) H L then 

x € Ng{Lq) and x € L — M L0 =  L0M which imply =  L0, where x =  lo £ L0, 

rriiM. So (L j)m =  ^ 0  which means that m G Ng (L0) =  W. Then m G M H W =  1 

hence m =  1 and x =  lo G Lo* This proves that W fl L Ç Lq.

We know that L0 is a complement of M in L . L\ is also a complement of 

M in L. Indeed, M Li =  M(Wi n L) and by 1.6 M{WX n L) =  (MWi) n L. So 

ML\ =  (MW\ ) D L. But MWi =  G for otherwise we have W\ Ç MW\ C G which 

implies W\ — MW\ since W\ is maxim in G and so M Ç Wi, in contradiction with 

1.7.(iii). Thus ML\ =  G n L =  L. Further, M n L\ =  1 since

M n L 1= M r \ ( w l n L )  = ( M n W i ) n L

and M C\Wi =  1 as we shall see below. First note that M n W\ <  G. Indeed, if 

x G G =  MWi, x =  mitüi with mi G M, mi G W\, and m G M fl W\ then, using that 

M is abelian and that M fl W\ <  W\, we have:

x~lmx =  =  w ^m Ţ 1 mm\W\ =  wimmf 1miit;i =  G MnWi-

Now from M PI W\ <  G, M fl Wi Ç M, M C\W\ ^  M (for otherwise M CW \, 

contradicting 1.7.(iii)) and M minimal norma subgroup of G we obtain M fl W\ =  1.
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By 1.4.(b) Lq and L\ are conjugate under M, i.e. Lq =  LŢ for some m £ M 

Further, L0 Ç W n WJ71 since L0 =  Ng {L0) f l L0 =  W H L0 Ç W and LiO =  LŢ = 

(Wx HL)m Ç FFf\ Moreover, from L0 <  NG{L0) =  W and L0 =  L ?  =  {Wx n L)m <  W{ 

it follows Lo <  WW™.

• We shall prove that W =  W™, which means that W and W\ are conjugate in G 

Let us suppose that W £  Wxm. From W <  WW? <  G and W /  WW? {W =  WWŞ 

is impossible because it implies W™ Ç W hence W\ Ç Wk C G and W\ =  Wk> where 

k =  m_1, since W\ is maximal in G; but this leads to the contradiction W =  W™) since 

W is maximal in G it can be inferred that WW™ =  G. Thus L0 <J WW™ =  G so that ; 

W =  Ng (Lq) =  G, a contradiction. It follows that W =  W™. □

Theorem 3.7. If G is a primitive it-solvable group, V <  G such that there is a minimal 

normal subgroup M of G which is a solvable n-group and MV =  G, then V is a stabilizerf 

of G.

Proof. M n V is a normal subgroup of G. Indeed, let g £ G =  MV =  VM, g =  vm for j 
some v £ V ym £ M and let x £ M n V. Since M n V <  V and since by 1.3 M is abelian 

we have:

g~lxg =  (vm)~x x(vm) =  m~x (v~x xv)m =  m~xm{v~xxv) =  (v~xxv £ M n V
I

Now MnV =  1 since M is a minimal normal subgroup of G and since M f)V <3 G, \ 

M nV C M, Mf)V ^  M (supposing M nV — M it follows M Ç V and so G — MV =  V, ! 

in contradiction with V <  G).

Let us verify that V is a stabilizer of G.

First, V is a maximal subgroup of G. Indeed, V ^  G and we shall prove that 

V <  V* <  G imply V =  V*. Suppose V <  V* and let v* € V* \ V C G =  MV. 

Then v* =  mv for some mîM, v £ V, Hence m =  v*v~x £ M n V * .  We prove that 

M fl V* =  1. From G =  MV Ç M F* Ç G it follows M F* =  G. Hence M n F * <3 G (as 

the above proof for M fl V <  G). Since M is a minimal normal subgroup of G and since 

M H V* <J G, M fl V* Ç M, M n F * ^  M (supposing MnV* =  M we have M C V*, 

hence G =  MV* =  V*, a contradiction) it follows M n V* =  1. Thus m =  1 and so 

v* = v  £ V,  a, contradiction.

Finally, corecV =  1. Indeed, suppose corecV ^  1. By 3.1 M is the only 

minimal normal subgroup of G. Thus since coreeV <  G we have M Ç cores V. But 

corecV Ç V’ and so M Ç V . Then G =  M F =  V, a, contradiction. □
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