TORSION IN Γ-LATTICES

GRIGORE CALUGXREANU
Dedicated to Professor Ioan Purdea at his 60 ${ }^{\text {th }}$ anniversary

Abstract

After general properties of Γ-lattices, a new notion of torsion is given and some of its connections with purity are established.

1. Introduction

Let ($\Gamma, \cdot, 1$) be a monoid. A lattice L is called Γ-latice ($[3]$) if it is provided with a multiplication $\varphi: \Gamma \times L \rightarrow L$ (we shall denote by $\gamma a=\varphi(\gamma, a)$) which satisfies the following axioms

$$
\begin{aligned}
& \Gamma 1: \gamma a \leq a \\
& \Gamma 2: \gamma(a \vee b)=\gamma a \vee \gamma b \\
& \Gamma 3:\left(\gamma \gamma^{\prime}\right) a=\gamma\left(\gamma^{\prime} a\right) \\
& \Gamma 4: 1 . a=a
\end{aligned}
$$

The source of this notion is the lattice of all the submodules of a given module M over a commutative ring R with identity on which the monoid of the principal ideals of R operates in a natural way: $\varphi(r R, A)=r A(r \in R, A \leq M)$.

Remark 1.1. This monoid naturally acts also on quotient R-modules.

Moreover, this monoid has a special element : the zero ideal. In order to get suitable definitions for purity, divisibility and torsion and to recover some of the standard results one must consider a zero element in the monoid Γ. This is called a Γ_{0}-lattice if it satisfies the axiom
$\Gamma 0$: for each $a \in L, 0 . a=0$ holds.
We say that Γ has no zero-divisors if $\gamma \neq 0, \delta \neq 0$ imply $\gamma \cdot \delta \neq 0$.
A subset $C \subseteq L$ is called a system of generators for L if each element of L is a union of elements from C. A system of generators is called closed if $\Gamma \cdot C \subseteq C$.

[^0]As in [2] we use the quotient sublattice notation $b / a=\{c \in L \mid a \leq c \leq b\}$. An element $c \in L$ is called cycle if $c / 0$ is a noetherian and distributive sublattice. Clearly, using $\Gamma 1$, for any cycle c and any $\gamma \in \Gamma, \gamma c$ is a cycle too.

In a Γ_{0}-lattice an element $d \in L$ is called divisible if $\forall 0 \neq \gamma \in \Gamma: \gamma d=d$.
In a Γ-lattice L an element p is called pure (see [1]) if $\gamma p=p \wedge \gamma 1, \forall \gamma \in \Gamma$.

2. Elementary results

In what follows Γ will denote a (non-necessary commutative) monoid. For the proofs of the following simple results see [1].

Lemma 2.1. In any Γ-lattice, $\gamma .0=0, \forall \gamma \in \Gamma$.

Consequence 2.1. 0 is divisible in each Γ_{0}-lattice.

- One can consider, for a fixed $\gamma \in \Gamma$, the upper semi-morphism (according to Г2) $\varphi_{\gamma}: L \rightarrow L, \varphi_{\gamma}(a)=\gamma a, \forall a \in L$. Hence

Lemma 2.2. φ_{γ} is an order-preserving morphism.

Hence

Lemma 2.3. (i) $a \leq b \Rightarrow \gamma a \leq \gamma b$. Moreover,
(ii) $\gamma(a \wedge b) \leq \gamma a \wedge \gamma b$.

A subset B of a Γ-lattice L is called a Γ-stable if $\forall \gamma \in \Gamma, \gamma B \subseteq B$.
Clearly (using $\Gamma 1$) the sublattices $a / 0$ are Γ-stable and in general not every sublattice $1 / a$ (or b / a) is Γ-stable.

Proposition 2.1. A sublattice b / a is Γ-stable iff a is divisible.
Lemma 2.4. Each divisible element is also pure.
Reconsidering 1.1 we consider on quotient sublattices b / a the following Γ-lattice structure:
$\forall \gamma \in \Gamma, \forall c \in b / a: \gamma * c=(\gamma c) \vee a$
enlarging in this way the notion of Γ-sublattice (Γ-stable sublattices).
Obviously, if a is divisible this is the natural Γ-lattice structure on b / a obtained by restriction.

3. Torsion and purity in Γ_{0}-lattices

In this section we give some properties of a new notion of torsion in a Γ_{0}-lattice L connected with purity (continuing [1]). In this context special new conditions on Γ_{0}-lattices seem to be necessary.

Observe that the inequality $\bigvee\{\gamma a \mid \gamma a \leq b\} \leq b \wedge \gamma 1$ holds for each $b \in L$ and each $\gamma \in \Gamma$.

Clearly, if $b=\gamma x$ for a suitable $x \in L$ this is an equality: indeed, both members are equal to b. Generally, if $b \notin \Gamma \cdot L$ this could be no equality.

In the sequel we shall call a Γ-lattice dense if for each $\gamma \in \Gamma$ and each $b \in L$ the equality $\bigvee\{\gamma a \mid \gamma a \leq b\}=b \wedge \gamma 1$ holds.

We use bounded elements in a Γ_{0}-lattice, i.e. elements $b \in L$ such that there is an $0 \neq \gamma \in \Gamma$ with $\gamma b=0$. We shall denote by B the set of all the bounded elements of L.

For a Γ_{0}-lattice L the torsion part $t(L)$ is defined as the union of all the bounded (compact) elements. Then L is called a torsion lattice if $t(L)=1$ resp. $t \in L$ is called a torsion element if $t=t(t / 0)$. The lattice L is called torsion-free if $t(L)=0$ resp. $u \in L$ is called a torsion-free element if $t(u / 0)=0$.

A closed system of generators $C \subseteq L$ is called good if $C \cap(t(L) / 0) \subseteq B$, i.e., the generators $c \in C$ such that $c \leq t(L)$ are bounded (as concrete examples one could consider the compact elements in algebraic H-noetherian lattices or the cycles in cyclic generated lattices).

We first record in a Γ_{0}-lattice L the following simple properties:
(a) If $a \leq b$ and b is bounded then a is also bounded. In particular, by $\Gamma 1$, if b is bounded, γb is bounded too, for each $\gamma \in \Gamma$.
(b) Each atom is bounded or divisible.
(c) If C is a system of generators for L then any bounded element b is an union of bounded generators $\left\{c_{i}\right\}_{i \in I} \subseteq C$. Moreover, if for $0 \neq \gamma$ we have $\gamma b=0$ then $\forall i \in I: \gamma c_{i}=0$.

Consequently, if the Γ_{0}-lattice L has no divisible atoms
(d) The socle $s(L) \leq t(L)$.
(e) If u is a torsion-free element then $u / 0$ has no atoms.

If Γ has no zero-divisors
(f) For each $0 \neq \gamma \in \Gamma, b$ is bounded iff γb is bounded.

Indeed, if γb is bounded there is $0 \neq \delta \in \Gamma: \delta(\gamma b)=(\delta \gamma) b=0$. Γ having no zero-divisors, $\delta \gamma \neq 0$ and so b is bounded. The rest is (a).

Proposition 3.1. If Γ has no zero-divisors the "radical" property:

$$
t(1 / t(L))=t(L)
$$

holds in a Γ_{0}-lattice L with a good system of generators C.
Proof. By definitions: $1 / t(L)$ is a torsion-free sublattice \Leftrightarrow
$\forall b \in 1 / t(L), \exists 0 \neq \gamma \in \Gamma: \gamma * b=t(L) \Rightarrow b=t(L) \Leftrightarrow$
$\exists 0 \neq \gamma \in \Gamma: \gamma b \leq t(L) \leq b \Rightarrow b=t(L)$. The lattice L having a (good) system of generators C, the inequality $b \leq t(L)$ can be verified as follows: $\forall c \in C, c \leq b \Rightarrow c \leq t(L)$.

Indeed, if $c \leq b$, by $2.3 \gamma c \leq \gamma b \leq t(L)$. C being a good system of generators γc is also a generator and it is bounded. Hence by (f) c is bounded too and $c \leq t(L)$.

Consequence 3.1. If Γ has no zero-divisors, L is cycle generated Γ_{0}-lattice and the cycles in $t(L) / 0$ are bounded then L has the "radical" property. \square

Consequence 3.2. If Γ has na zero-divisors and L is an algebraic and H-noetherian Γ_{0}-lattice then L has the "radical" property. \square

Another condition we need in the propositions that follows is:
for each $0 \neq \gamma \in \Gamma, \gamma a \leq \gamma b \Rightarrow a \leq b$ for elements in torsion-free Γ_{0}-lattices (*).
Proposition 3.2. If for an element p in a dense Γ_{0}-lattice L the sublattice $1 / p$ is torsionfree then p is pure. Conversely, if p is pure in a torsion-free Γ_{0}-lattice L with (*) then $1 / p$ is also torsion-free.

Proof. Indeed, $1 / p$ is torsion-free iff $\exists 0 \neq \gamma \in \Gamma: \gamma u \leq p \leq u \Rightarrow u=p$. Using the density of L we prove the inequality $p \wedge \gamma 1 \leq \gamma p$ as follows: $\gamma a \leq p \wedge \gamma 1 \Rightarrow \gamma(a \vee p)=$ $\gamma a \vee \gamma p \leq p \wedge \gamma 1 \leq p \Rightarrow a \vee p=p \Rightarrow a \leq p \Rightarrow \gamma a \leq \gamma p$.

Conversely, for $0 \neq \gamma \in \Gamma: \gamma u \leq p \leq u$ and $\gamma p=p \wedge \gamma 1$ we have to prove that $u=p$.

First, observe that $\gamma u \leq p, \gamma u \leq \gamma 1 \Rightarrow \gamma u \leq p \wedge \gamma 1=\gamma p$ and $p \leq u \Rightarrow \gamma p \leq \gamma u$ so that $\gamma u=\gamma p$. One has finally to use $(*)$.

Proposition 3.3. If Γ has no zero-divisors, in a dense Γ_{0}-lattice L with a good system of generators, $t(L)$ is pure.

Proof. This is an immediate consequence of 3.1 and 3.2.
Proposition 3.4. In a dense torsion-free Γ_{0}-lattice L with (*), an intersection of pure elements is pure.

Proof. Let $\left\{p_{i}\right\}_{i \in I}$ be a family of pure elements of L and let $\bar{p}=\bigwedge_{i \in I} p_{i}$. The lattice being dense it suffices to verify that for each $0 \neq \gamma \in \Gamma: \gamma a \leq \bar{p} \wedge \gamma 1$ implies $\gamma a \leq \gamma \bar{p}$.

Indeed, $\gamma a \leq \bar{p} \wedge \gamma 1=\left(\bigwedge_{i \in I} p_{i}\right) \wedge \gamma 1=\bigwedge_{i \in I}\left(p_{i} \wedge \gamma 1\right)=\bigwedge_{i \in I}\left(\gamma p_{i}\right)$ implies $\gamma a \leq \gamma p_{i}$ for each $i \in I$. Now the condition (*) implies $a \leq p_{i}$ for each $i \in I$ and so $a \leq \bar{p}$. Hence $\gamma a \leq \gamma \bar{p}$ by 2.3 .

Final remark. Although with a promising start, Γ-lattices require too much special conditions in order to obtain important results.

References

[1] Călugăreanu G., Purity in 「-lattices, Mathematica (to appear) 1998.
[2] Crawley P., Dilworth R.P., Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, N.J. 1973.
[3] Salce L., Modular Lattices and polyserial Modules, General Algebra 1988, Proc. Internat. Conf., Krems, Austria, p.221-231.
"Babes-Bolyai" University, Fatulty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

[^0]: This research was completed in the Universita degli Studi of Padova under a Nato-CNR fellowship.

