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REZUMAT. - Miscarea radiald in cimpul Maneff. Se studiazi migcarea
radiald in cadrul problemei celor dou# corpuri in cadmpul gravitational post-
newtonian nerelativist propus de G.Maneff (caractenizat de un potential
cvasiomogen). Pe baza integralei prime a energiei, se stabilesc traiectorii de
coliziune sau evadare pentru toate valorile §i pentru cele dou orientiri posibile

ale vitezei inifiale.

Proposed in 1924, Maneff’s post-Newtonian nonrelativistic gravitational
law [5-8] proved itself able to describe accurately the secular motions of both

perihelia of inner planets and Moon’s perigee. As showed in [4], Maneff’s law
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provides the same good theoretical approximation for these phenomena as the
relativity. Reconsidered recently (starting with F.N.Diacu’s researches), Maneff’s
potential appeared much less commonplace than at first sight, showing
interestihg and surprising properties (see [1-3,9]). This field has implications not
only in physics and (celestial) mechanics, but also in astrodynamics, cosmogony,
astrophysics [10], even in gtomic physics (see [1]).

In this note we shall consider the radial motion in Maneff’s field, more
precisely the rectilinear motion in the framework of the two-body problem with
the potential function (e.g. [1,3,9])

;. Gmm, [1 . 3G(ml+m2)], o

r 2¢%r

where m,,m, = the masser, r = distance between m, and m,, G = Newtonian
gravitational constant, ¢ = speed of light.
It is easy to see that, with the potential function (1), the relative motion

of m,, say, with respect to m, will be described by the equation

pe-Br_g(RYr )
r3 Cc r4
with p=G(m, +m,). In polar coordinates (7,u), (2) transforms as (see [9])
Forare b3 WO o 3)
r2 r3
rii+2ru=0, (1)

100



RADIAL MOTION IN MANEFF’S FIELD

system to which we attach the initial conditions
(r,u,ru)(ty) = (r,,u, V, cosa, V, sina/r,), &)}
where V' = velocity, a = angle between initial radius vector and initial velocity
(remind that we study the motion of m, in a frame originated in m,).
The force field is central, so the angular momentum is conserved and (4)
provides the first integrai
r*u=C, 6)
where C =7,V sina is the constant angular momentum. The first integral of
energy can also be easily obtained by the usual technique
V2=r2+(ru)2=27“+3£ﬁ+h, %

r

where the constant of energy A results to have the expression

2
h=vi-2 B 3oy ®)
r, %

In the following we shall consider only the rectilinear motion (o = 0 or
a =x, so C = 0). In this case (7) leads to V?=r2, but the integral of energy
explicited by (7) and (8)
2
ve=p2eop|d o Lles(BY (L 1) ©)
r VO C r2 r02
keeps the same expression as in the general case.

We shall study the motion for all values of V. The domains in which the
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motion is possible, featured by the condition 2 = 0, will be pointed out, and the
characteristics of the motion as well.

Let us first introduce the following abridging notation

2
V=i_+\/§ll’ V2=J2£+3(u/c) ) (10)

: ‘/37 cr, r, ,.02
Suppose that ¥, > V,. In this case A > ¢*/3. If a = 0 (radial motion outwards),

m, will follow an escape trgiectory on which ¥ decreases continuously, tending
to \/7; when r tends to infinity. If o = = (radial motion inwards), we have a
collision trajéctory with continuously increasing velocity srch that V' — oo for
r—0.

For V, = V,, we have h = ¢*/3. The possible scenarios are the same:
escape path with decreasing velocity (V — ‘/ﬁ = c/ﬁ when 7 — ) for a =0,
and collision path with increasing velocity (V. — o when r — 0) for a = =

Let now consider V, < ¥, < V,, which means 0 < h < ¢*/3. All is like
previously: the motion directed outwards is decelerated but leads however to
escape, while the motion directed inwards is accelerated and leads to collision.
At 'limit.s V tends to the same values yh and o, respectively.

For V, =V, we have h =: 0. The scenario is identical: a = 0 means ¢scape
trajectory with ' — 0 for r —» o, while a = n leads to collision (with }* — =«
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when r — 0).
Lastly, consider V, < V,, meaning h < 0. If a = 0, then m, moves

outwards with decreasing velocity, such that for
3ulc?
~1+y/[1 +3uhcr)P - 3(V,lcP

¥y =

(1)

m, stops, then it starts inwards and collides with m, (V' —> o for r — 0). If o =
n, we have a collision path with continuously increasing velocity, tending to
infinity when r — 0.

Notice that V; has no physical, but only mathematical importance (this
value of ¥V, annuls the discriminant of the second degree polynomial function V'
= V(1/r) given by (9)), while 1", has a precise physical significance (this value
of V, annuls the constant of energy).

Concluding, in Maneff’s field the radial motion has no other end but
escape or collision, just like in the Newtonian field. By analogy with this last
one (and by abuse of language), we shall call V, (for which A = 0) "parabolic
velocity". So, the "hyperbolic/parqbolic-type" (V, = V,) rectilinear motion
directed outwards in Maneff’s field leads to escape with decreasing velocity

(which tends to the corresponding value ‘/ﬁ- = 0 when r — ). The "elliptic-
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type" (V, < V,) rectilinear motion directed outwards cannot lead to escape; m,

stops at a finite distance (11), then reverses the sense of motion and directs itself

with increasing velocity to collision. As to the rectilinear motion directed

inwards from the beginning, it ends in collision for any value of the initial

velocity.
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