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REZUMAT. - Mişcarea radiali în câmpul Maneff. Se studiază mişcarea 

radială în cadrul problemei celor două corpuri în câmpul gravitaţional post- 

newtonian nerelativist propus de G.Maneff (caracterizat de un potenţial 

cvasiomogen). Pe baza integralei prime a energiei, se stabilesc traiectorii de 

coliziune sau evadare pentru toate valorile şi pentru cele două orientări posibile 

ale vitezei iniţiale.

Proposed in 1924, M a n e ff s post-Newtonian nonrelativistic gravitational 

law  [5-8] proved itse lf able to describe accurately the secular motions o f both 

perihelia o f inner planets and M oon’ s perigee. As showed in [4], M a n e ff s law
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provides the same good theoretical approximation fo r these phenomena as the 

re la tiv ity. Reconsidered recently (starting w ith  F.N.D iacu’s researches), M a n e ff s 

potential appeared much less commonplace than at firs t sight, showing 

interesting and surprising properties (see [1-3,9]). This fie ld  has im plications not 

only in  physics and (celestial) mechanics, but also in astrodynamics, cosmogony, 

astrophysics [10], even in  atomic physics (see [1]).

In  this note we shall consider the radial m otion in M anefTs fie ld , more 

precisely the rectilinear m otion in  the fram ework o f the two-body problem w ith

the potential function (e.g. [1,3,9])

U  =
Gm{m2 j  + 3 G(m{ + m2) 

2 c 2r
( 1)

where mx,m2 = the masser, r = distance between mx and m2, G = Newtonian 

gravitational constant, c = speed o f light.

It is easy to see that, w ith  the potential function (1), the relative motion

o f m2, say, w ith  respect to mx w ill be described by the equation

w ith  p = G(mx + m2). In  polar coordinates (r,u), (2) transforms as (see [9])

i ^ J L o i ü ^ - 0 ,  (3>
r 1 r J

r ii+ 2 r it -0 ,  (4)

r -  ru ‘
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system to which we attach the in itia l conditions

(r,M ,r,ti)(/0) = (r0,u0, V0 cosa, V0 s ina /r0), (5)

where V = ve locity, a  = angle between in itia l radius vector and in itia l velocity 

(rem ind that we study the m otion o f m2 in a frame originated in  /»,).

The force fie ld  is central, so the angular momentum is conserved and (4) 

provides the firs t integral

r 2« = C , (6)

where C » r0 V0 sina is the constant angular momentum. The firs t integral o f

energy can also be easily obtained by the usual technique

V2 = r 2 + (ru f  = I t  + 3 + h, (7)r r 2
where the constant o f energy h results to have the expression

h = Vp - 2 —  - 3  , (8)
ro r02

In the fo llow ing  we shall consider only the rectilinear motion (a  = 0 or 

a  = ji,  so C = 0). In this case (7) leads to V2=r2, but the integral o f energy 

explicited by (7) and (8)

= F02 + 2 p

( \ 
1 1 ' l _ l '

r rn\ 0 / \ U /

(9)

K  ro l
keeps the same expression as in the general case.

We shall study the motion for all values o f V0. The domains in which the
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m otion is possible, featured by the condition F2 ^  0, w ill be pointed out, and the

characteristics o f the m otion as w ell.

V
' &

Let us firs t introduce the fo llow in g  abridging notation

: V =
»  r 2crn

N

2 ± + 3 W ç f
(10)

Suppose that V0 > Vv In  this case h > (?I3. I f  a  = 0 (radial m otion outwards), 

m2 w ill fo llo w  an escape trajectory on which V decreases continuously, tending 

to \fh when r  tends to in fin ity . I f  a  = ji (radial m otion inwards), we have a 

collision trajectory w ith  continuously increasing velocity sn^h that V -* <*> for

0.

For V0 = Vu we have h -  (?I3. The possible scenarios are the same: 

escape path w ith  decreasing velocity (V -*\fh  = dyj3 when r -* oo) fo r a = 0, 

and collision path w ith  increasing velocity (V -* »  when r - ►  0) fo r a  = n.

Let now consider Vi < Vo < Vxt which means 0 < h < <?!3. A ll is like 

previously: the m otion directed outwards is decelerated but leads however to 

escape, w hile the m otion directed inwards is accelerated and leads to collision 

A t lim its  V tends to the same values yjh and <», respectively.

For V0 = V2 we have h z 0. The scenario is identical: a  = 0 means escape 

trajectory w ith  V -* 0 fo r r -  - oo, while a = n leads to collision (with T - *  >
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when r —» 0).

Lastly, consider V0 < V2, meaning h < 0. I f  a  = 0, then m2 moves 

outwards w ith  decreasing velocity, such that fo r

r - ______________ 3>l/c’______________ (11)
-1  ^ [ 1  * 3 |i / ( c ! r( ) F - 3 ( l ' 1,/c)1

m2 stops, then it starts inwards and collides w ith m, (V  oo fo r r -*■  0). I f  a  = 

it, we have a collision path w ith  continuously increasing velocity, tending to 

in fin ity  when r  - *  0.

Notice that Vl has no physical, but only mathematical importance (this 

value o f V0 annuls the discrim inant o f the second degree polynom ial function V 

= V(lIr) given by (9)), w hile V2 has a precise physical significance (this value 

o f V0 annuls the constant o f energy).

Concluding, in  M a n e ff s fie ld  the radial motion has no other end but 

escape or collision, just like  in the Newtonian fie ld. By analogy w ith  this last 

one (and by abuse o f language), we shall call V2 (fo r which h = 0) "parabolic 

ve locity". So, the "hyperbolic/parabolic-type" (V0 * V2) rectilinear motion 

directed outwards in ManefPs fie ld  leads to escape with decreasing velocity 

(which tends to the corresponding value \fh ^ 0 when r -» oo). The "e llip tic -
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type" (v0< V2) rectilinear motion directed outwards cannot lead to escape; m2 

stops at a finite distance (11), then reverses the sense of motion and directs itself 

with increasing velocity to collision. As to the rectilinear motion directed 

inwards from the beginning, it ends in collision for any value of the initial 

velocity.

R E F E R E N C E S

1. Diacu,F.N., The Planar Isosceles Problem for ManefjPs Gravitational Law, J.Math. 

Phys., 34(1993), 5671-5690.

2. Diacu,F.N., Illner,R., Collision/Ejection Dynamics for Particle Systems with 

Quasihomogeneous Potentials, Preprint DMS-624-IR, University of Victoria, February 

1993.

3. Diacu,F.N., Mingarelli,A., Mioc,V., Stoica,C., The Manew Two-Body Problem: 

Quantitative and Qualitative Theory, World. Sci. Ser. Appl. Anal., Vol.4, Dynamical 

Systems and Applications, World Scientific Publ. Co., 1995 (to appear).

4. Hagihara,Y., Celestial Mechanics, Vol.2, Part 1, The MIT Press, Cambridge, 

Massachusetts, 1975.

5. Maneff,G., La gravitation et le principe de Légalité de Paction et de la réaction,

C.R.Acad. Sci. Paris, 178(1924), 2159-2161.

6. Maneff,G., Die Gravitation unddas Prinzip von Wirkung und Gegenwirkung, Z.Phys , 

31(1925), 786-802.

7. Maneff,G., Le principe de la moindre action et la gravitation, C.R.Acad. Sci Paris, 

190(1930), 963-965.

. 8. Maneff,G., La gravitation etPénergie au zéro, C.R.Acad. Sci. Paris, 190(1930), il 374-

104



RADIAL MOTION IN MANEFF’S HELD

1377.

9. Mioc,V., Stoica,C., Discussion et résolution complète du problème des deux corps 

dans le champ gravitationnel de Maneff, C.RAcad. Sci. Paris, 320(1995), 645-648.

10. Ureche, V., Free-Fall Collapse o f a Homogeneous Sphere in Maneff's Gravitational 

Field, Rom. Astron. J., 5(1995) (to appear).


