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REZUMAT. - Aproximiri prin functii spline cu deficienfa pentru ecuatii
diferentiale de tip neutral cu intarziere. In aceasti lucrare se considerd un
procedeu de rezolvare numerici a ecuatiei diferentiale de ordinul al doilea cu
argument modificat utilizand functii spline polinomiale de gradul m = 3 si
clasi de continuitate C™2. Se studiazi estimarea erorni procedeului de colocatie
dat, impreund cu convergenta metodei. Un exemplu numeric ilustreazi
eficienta metodei.

Abstract. A collocation procedure with polynomial spline functions of
degree m = 3 and continuity class C™? is considered for numerical solution of
a sccond order initial value problem for neutral delay differential equations. The
estimation of the erroras \'1;’,{4:11 as the convergence of the deficient cubic spline

approximations is investigated.
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1. Introduction. In recent years functional differential equations have
been applied in various fields of science and consequently, a large number of
papers on the theory of functional differential equations has been published. The
divergence of higher degree spline function methods arises from the enforcement
of the continuity requirement on the spline functions. It is possible to generate
convergent higher order mgthods by relaxing the continuity. This type of method
will be considered in this paper. Here a spline approximation for the numerical
solution of neutral delay differential equations has been introduced with degree

m = 3 and continuity class C"™2.

2. Description of the spline collocation method. Consider the followm
second order initial value problem for neutral delay differential equations:
y" () =f(t,y({),y(g(t)),y’(g(t))), tE€[a,b]
ROELOX y’(t)’=cp’(t), t€[a,b], asa<b (20
The function g, callgd the delay function, is assumed to be continuous on
the interval [o,b], and to satisfy the inequality o < g(¢) <¢, 1t € [a,b], and ¢
C™'[a.,a], where m > 2. Asstme that the functional
f:[a,b] x C''[a,b] x C'[a,b] x C[ar,b] = R
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satisfies the following conditions H, and H,:

H,. For any x € C'[a,b], the mapping ¢— f(t,x(£),x(),x'(*)) is
continuous on [a,b].

H, The follbwfng Lipschitz condition holds:

1/ x,0.,(),2,()) ~f (X0, ,(), 2, (D
JACREN MPR N 7AW NANE S EAEA ]
*Llz, -z, ,

with L, 20,0 < L, <1, 8 > 0, for any ¢ € [a,b], x,x, € C'[a,b],
WNiVaZ1,22 € Cla,a). Under conditions H, and H,, the problem (2.1)
has a unique solution y € C?[a,b] N C[a,bl; see [1,2].

As it is well known, jump discontinuities can occur in various higher
order derivatives of the solution even if f,g, are analytic in their arguments.
Such jump discontinuities are caused by the delay function g and propagate from
the point a as the order of derivative increases. We denote the jump
discontinuities by {3}, which are the roots of the equations g(&) =E,,; §, = a
is the jump discontinuity of ¢. Since in this paper g does not depend on y, we
can consider the jump discontinuities to be known for s ifficiently high order
derivatives and to be such that
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By <E <..<By <E<.,Ey

We shall construct a deficient polynomial spline approximating function of
degree m = 3 and deficiency 2, denoted by s: [a,6] — R.

Consider the interval [E.E;,], j = 0, ..., M-1, subdivided by a uniform
partition by the knots

B =1, <H<.<<f, <.<iy=E,,

where #, = t, + kh and h = (E;,, - §)/N. The spline function s approximating the
solution of (2.1) is defined on each subinterval [t,1,,,] by

s@t) = E (l)( k) i, a

-t)
o ! ) (m -1)!

where s%(t,), 0 < i < m-1, are left-hand limits of the derivatives as t — 1, of the

- ""+b - 22
(t-1) Tn—(t " (2.2)

segment of s defined on [t ], and the parameters a, and b, are determined

from the following collocation conditions:

s"(t, +hI2) =
Aty +h2, 5@, +h2), s(g(t, + h2)), 5" (g1, + h2)) (2.3)
5" () =t 50,10, (8 (140, 57 (8(1, 1)) 2.4)

In this way, we obtain a spline function of degree m = 3 and class C™?* over the
entire interval [E,E,], with tie knots {tk}f_o. It remains to show that, for /
sufficiently small, the parameters a, and b, can be uniquely determined from
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(2.3) and (2.4).
| THEOREM 2.1. If f satisfies conditions H, and H,, ¢ € C™'[a,a], a =
g(h) st t € [o,b], and if h is sufficiently small, then there exists a unique spline
approximating solution of problem (2.1) given by (2.3)-(2.4).

Proof. 1f is sufficient to proof that a, and b, can be uniquely determined
from (2.3) and (2.4). Substituting (2.2) in (2.3) and (2.4), we have

a,

R e Pyt 22 By,

m-1 bk m
ER

p +h . a h m-2+ b h B m-1
Ak(é(tk 3) ( _2)' (g(k tk) ( 1)' (g(k —2‘) t/;) )

_2m-2Ak//(tk+_l;_)

2m-2f[t + 2’ k([

A (g, + g» N

(! —*, @ty

f(k+1’ k( +1) ( 1)'

b
A (g(t/;+l)) (g( k*l) - )m : +7‘;(g(tk+1) _tk)m,

~a,
( -1)!

A (g + (&(1) ~ )" + g(t.) =) |+ A4 (4.)

a, b,
(m -2)! (m-1)! (TR
e 22

e+ 2
m!

f[tk«pAk(tm) N
=)
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b
Ak(g( k+l )) (g( k+l) ) —m—’;'(g(thl) - tk)m,

(m-1)! 1)‘

/ b n"
Ak (g(thq)) (g( kq) - ) ( 1)' (g( kq) t)m- ] Ak (’kq)

a,
(m-2)!

—2""3f(t * =4, +—) (my™ +-11‘;-(h)",
m!

=
m-1 b m
As( s ) Tt 1),(g(k 2 t,,) +Tn§(g(t,+-’2’->-u),

PHEORES S C = (g( ) ) - ”l), CORARS ]2A 2
where
A1) = 22 U)( Do)

Thus we have

a,=G(a,b,)

b, =Gya,,b,). 2.5)
Using assumption H, for _S-Ir:n}i(fnﬂj—ls)_}l)' <1 the application G: R* — R? defined
by

@,.b,) = (G\(a,,,),G (a,.b,) (2.6)

is a contraction mapping and has a unique solution (a,5,), which can be found
by iteration. This completes the proof of the theorem.

In order to make a connection between the spline method and discrete
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multistep methods, we present the following theorem, which gives the
relationship between the value of any spline function s € S,, and its second
derivative at the knots.

THEOREM 2.2. [3] For any spline function s €S, sEC™?a,b], m =
3, there exists a unique linear consistency relation between the quantities s(t,)

and s” (t,), k=0,1,..,m-2, namely

m-2 m-3
Y a”s@t,,)=h*Y b™s"(t,), OsvsN-m+1, (2.7)
Jj=0 J=0
where
a:=m-1)[0,,(+1)-20,,(0)+0, (-1
b™:=(m-1Q, . (+1), (2.8)
and

. 1 u vl k),
0= ot B (,.)(t it

THEOREM 2 3. The spline approximating values s(t,), k =0,N of the

above procedure are exactly the values furnished by the following multidiscrete

method
m-1 - m-1
Y a™Y,, =h*Y 6™V, 0svsN-m+1, 2.9)
J=0 J=0 -

where the coefficients af"') and bj(”') are given by (2.8), if the starting values

Vo =S (), s Vs =5(L,_,) (2.10)
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are used.

Proof. For h small enough, only one set of values {y,}, is satisfying the
relation (2.9) with the starting values (2.10). But obviously the spline values
{5}, are satisfying (2.9) on the basis of the consistency relation (2.7) and also
the starting values (2.10). That means the spline values must coincide with the
values given by the discre_te multistep method (2.9).

In the sequel, we shall be concemed with estimating the error in the
approximation of the solution of (2.1) by splines as well as with the
convergence of the approximation s to the exact solution y as h — 0.

We now define the step function s™ at the knots {tk}:’_‘ l' by the usual
arithmetic mean:

sy = Lsm, - Lnyssmg, + Ly @.11)
2 2 2

We need the following iemmas:

LEMMA 2.1. Let s:[a,b] — R be the spline approximating function and
y be the unique solution of problem (2.1). If

Is(t,) - M) <Kh?, |s(g(t,)) - MU <KR?,
|s'(g(t,) - y' (&) <Kh?,
where K is a constant, then there exists a constant K, such that
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|s(t) -t <K h?, |s”(@)-y" ) <Kh®.
Proof. Using the Lipschitz condition H,, we have
ls“ @) -y" @)l
= £, 5t 5(2(2).5 ©) ~F (1, 1) & (). M),y (&t
= L{Is(t,) - Mt + Is(g(t)) - ¥(&t)| + 1" (@) - ¥' (8,1}
L{Kh?+Kh?+Kh?} =3KLh®.
If K= max{K, 3KL}, then we have
|s(t) -yt | <K, k2, |s” (g(2)) -y (@) <Kk .
LEMMA 22. [4] Let yEC™[a,b), and s be the spline function of
_degree m and class C™? with the knots {t,}, Suppose that the following
relations hold:
ls @) -y =0k"”), |s(g,) -y gt )| =0h™),
O<rsm-2, 0sksN,
|s ™) - y™(0)| =O0(h), t,<t<t,, 0=sksN.
Then it follows:
Is( =O| =0 *), p:=min{p,1+p,...(m-2) +p, .},
p, =1, ViE€]a,b]
and
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s ™) -y ™(O)| = Oh), tE[a,b).

3. Cubic spline function approximating the solution. By Theorem 2.3
for m = 3, the cubic approximating spline function of degree 3 and defficiency
2 yields the same values at the knots as the discrete multistep method based on
the following recurrence fqrmula:

h? h?
Ve "2 Ven = Ve V] = M * ] G
where
L=t 70). 180" (1)),
if the starting values y, = s(#,) and y, = s(¢,+h) are used. The discrete method
(3.1) has degree of exactness three provided that the starting values y, and y,
have third order accuracy.

As in [3], it is easy to prove that the starting values y, = s(,) and y, =
s(t;+h) have the same order of ‘cxactness as the recurrence formula (3.1);
therefore we can conclude that

|s() - t)| =Oh?), |s" 1) -y" (1) =0,
The second relation follows from Lemma 2.1 for p‘= 3.
THEOREM 3.1. If f€ C*([a,b] x C'[a,b] x C'[a,b] x C[a,b]) and s 1
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the cubic spline function of degree 3 and defficiency 2 approximating the
solution of (2.1), then there exists a constant K, independent of h, such that, for
h sufficiently small and t € [a,b],

|0) - @) <Kh?, |y'(0) - s"@O1 <K%, |y™ () =s" ()] <Kh.

Proof. The proof is similar to the proof of Theorem 3.1 in [5].

4. Numerical Example. Consider the following neutral delay differential
equation.
y" (f) = cost —%y(t) +%y(t -m)-y/(t-n), t20
=1, n<t=<0
The exact solution for this problem with the given initial function is:

Nt) =1-2cost +2cos

@ t), for t€10,mx].

Table I shows cubic approximations and Table II shows deficient spline

approximations of order 3 and continuity class 1, for 4 = %
Table I
k 8y s(t) Y e(t)
0 0.369943 1.000000 1.000000 2.0161678549E-07
1 -0.208136 1.000002 1.000000 1.3896369637E-06
2 -0.015305 1.000004 1.000000 3.2549742173E-06
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k ay s(ty) y(t) e(ty)
3 0.231232 1.000006 1.000001 5.7729739638E-06
4 -0.385548 1.000010 1.000001 9.2825812317E-06
5 0.429349 1.000015 1.000001 1.3213615603E-05
Table I
k a by s(ty) y(t) e(tk_)
0 3.206419 | 0.013867 .| 1.000396 | 1.000000 | 3.9586596358E-04
1 2.790963 | 0.012070 | 1.001532 | 1.000000 | 1.5321755618E-03
2 2.429338 ' 0.010506 1.003313 | 1.000000 | 3.3129796484E-03
3 2.114568 0.609145 1.005655 | 1.000001 | 5.6547611457E-03
4 1.840582 | 0.007960 | 1.008486 | 1.000001 | 8.4848242204E-03
5 1.602096 | 0.006928 | 1.011741 | 1.000001 1.1739892165E-02
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